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Chapter 1

Understanding VMI

1.1 Ion Imaging

Ion imaging, in the broadest sense, is a technique whereby ions are focussed onto
a 2D detector screen such that a 2D image of the ions is created. Judicious choice
of how this focussing is achieved can lead to two different outcomes, spatial-map
imaging (SMI) or velocity-map imaging (VMI). Simply put, SMI focusses ions
produced from the same spatial position within the ionising source to the same
position on the 2D image (irrespective of their momenta in the detection plane);
whereas VMI focusses ions produced with the same momentum in the ionising
source to the same position on the 2D image (irrespective of the position of
ionisation within the source). Both of these techniques are widely used within
the physical sciences. SMI is most often used in imaging mass spectrometry (for
example, to build up a picture of a surface sample based on the positions of
the recorded ions), whereas VMI finds an important niche in studies of chemical
dynamics, as it allows the velocity of ions produced via photochemical processes
to be easily and accurately measured. Indeed, this was the reason for the creation
of the VMI technique by Eppink and Parker - and their spectrometer design is still
widely used today in laboratories worldwide.

In the MBB group, we are primarily focussed on VMI - as the ultimate goal is
to characterise ultrafast processes in molecules using femtosecond laser-induced
Coulomb Explosion. The goals here are two-fold, one possibility is to charac-
terise the structures of neutral molecules that are difficult to interrogate spectro-
scopically (as the Coulomb Explosion is a non-resonant strong field process, so
is not subject to many of the selection rules that govern ‘conventional’ optical
spectroscopy). This is a technique which has been proven to work for ‘simple’
molecules in prior work by the Brouard Group, Michael, and the author. Extend-
ing this to more complex systems is challenging, but potentially fruitful. A second
possibility is to use the ultrafast imaging as a tool, coupled with inducing a pho-
tochemical process (e.g. photodissociation) on an ultrafast timescale, such that
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4 CHAPTER 1. UNDERSTANDING VMI

the process of interest can be monitored in real-time. This is the ‘femtochem-
istry’ that won Ahmed Zewail the Nobel Prize in 1999, and the creation of a true
‘molecular movie’ of a chemical process (e.g. covalent bond formation), has so
far proved elusive (despite what people doing ultrafast diffractive imaging try to
peddle at conferences).

The purpose of this document is firstly to give a background of the working
principles of VMI, together with some (hopefully) interesting insights into the
nature of velocity-focussing and drawing numerous analogies to classical ‘light’
optics. Secondly it is to document the development of the spectrometer from
conception to creation. Having known almost nothing about electrostatic lenses
or use of SIMION and Lua before I started this (and with very minimal assistance),
I think a document explaining the process and identifying many of the pitfalls I
fell into will be useful for future students.

1.2 Velocity Map Imaging

As stated, VMI is a process whereby the momenta of ions from a source are
mapped onto a 2D screen. Ions with the same momenta in the detector plane are
mapped onto the same spatial position on the detector, regardless of their initial
spatial position in the source region. This is illustrated in Figure 1.1.

Figure 1.1: Illustration of how VMI is achieved using an electrostatic lenses. Ions
with the same momenta have the same colour. Figure adapted from Harb et al
(doi: 10.1063/1.3505799).

Before we proceed and look at some actual spectrometer designs, it is useful
to define some coordinate conventions. These are shown in Figure 1.2.

The laboratory frame (Figure 1.2) is defined to coincide with the internal
coordinates used in the SIMION software package, such that the X-axis is the
time-of-flight (ToF) axis, and the detector plane is the YZ-plane. The laser is
assumed to propagate along the Z-axis, and therefore the polarisation plane is
the XY-plane. The molecular beam pulses approach along the X-axis. Note that
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Figure 1.2: Coordinate conventions, consistent with SIMION’s internal coordi-
nates. The detector is in the YZ-plane.

we maintain the convention whereby the laboratory frame is referred to using
upper-case letters, as is common in literature.

Ions are produced by an ionisation source, in this case a focussed laser pulse,
and are assumed to be created approximately isotropically1. The source region is 1This is, of course,

also a simplification as
the polarisation of the
laser field will induce some
anisotropy (dependent on
the molecular target).

defined by the overlap of the focussed laser beam, and (generally) a gas pulse from
a molecular beam source. This region is located between two electrodes, referred
to as the ‘repeller’ and ‘extractor’ electrodes, as shown in Figure 1.3. The voltage
applied to these electrodes is such that there is an electric field gradient2 between

2Many times weaker
than the electric field of
the laser pulse, so it does
not perturb the electronic
structure of the molecule
significantly/at all.

them, and the nascent cations are accelerated down a potential ‘hill’, away from
the repeller electrode. After the extractor electrode, there is a grounded electrode
to ensure that the region after the extractor electrode is essentially field free all
the way until the detector.

Most spectrometers (and the spectrometer designed here) are cylindrically
symmetric around the X-axis, and the electrodes are simply annular discs posi-
tioned orthogonal to the ToF axis (in the YZ-plane). The repeller plate has a
small hole in it to allow the molecular beam to pass through, and the extractor
plate has a larger hole, and the third lens has an even larger hole. As mentioned,
the voltages applied to the repeller and extractor plates create an electric field
gradient that accelerates ions towards the detection region. The form of this
electric field determines the focussing behaviour.

Figure 1.3 shows a model of a typical spectrometer (in the XZ-plane), with
some realistic voltages applied to the repeller and extractor. Plotted in red are
lines of equipotential, that is, lines where the potential due to the electric field is
a constant. Between the repeller and extractor plates, the equipotential lines are
approximately parallel. The region where the field extends through the extractor
electrode into the field-free region is clearly not composed of parallel lines - this
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Figure 1.3: Screenshot from SIMION showing a simple VMI interaction region.
The electrostatic lens is formed in the region where the equipotentials (red lines)
bulge - inhomogeneous electric field.

‘bulge’, or inhomogeneity in the electric field, creates an electrostatic lens - this
lens is what gives rise to the VMI focussing3.3The shape of the

equipotentials look rather
like a spherical glass light
lens - this is not a coinci-
dence. In a light lens the
curvature means that dif-
ferent light rays are devi-
ated by different amounts
depending on where they
hit the lens - leading to fo-
cussing behaviour.

Figure 1.4: Diagram showing the difference between velocity mapping (VMI) and
spatial mapping (SMI). The two diagrams show the same geometry and ions, but
with different voltages applied to the repeller and extractor electrodes (see text).
Ions of a common colour have the same velocity in the detector plane.

As the ions pass through this area of inhomogeneous field (‘through the lens’),
they undergo focussing. Figure 1.4 shows that the ions come through the lens,
fly through a field-free region, and then hit a 2D detector screen. The two spec-
trometers shown in Figure 1.4 have the same geometry, but with different voltages
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applied to the electrodes (see below). The blue and orange trajectories correspond
to ions of the same energy, but different momenta in the detector plane. The blue
ions have an initial momentum directed upwards, whereas the orange ions have
momentum directed downwards. There are several points to note about this:

� Ions of a common colour are created at different points within the interaction
region, but with the same momentum in the detector plane. It can be seen
that in the diagram marked ‘Velocity Mapping’, the ions with a common
colour are focussed to the same point on the detector - this is the point
at which the ions are termed to be ‘velocity focussed’. Ions of a common
velocity are focussed to the same point, regardless of their initial positions
within the source region.

� In the diagram marked ‘Spatial Mapping’, it can be seen that ions formed
from the same position are mapped to the same point on the detector - this
is the point at which the ions are ‘spatially focussed’.

� The voltages applied to the electrodes in both cases are similar - the repeller
is held at +2 kV, and the extractor is held at +1.58 kV (VMI) and +1.85 kV
(SMI).

� In general, it is impossible to make an electrostatic lens that is diverging
(which is possible with a light lens). It may seem as though the ions are
diverging having passed through our lens, but they are actually converging
relative to their initial velocities (as can be seen most clearly in the SMI
example).

The positions of the two focal planes can be controlled by adjusting the voltages
applied to the two plates, or by adding a third lens after the extractor that has a
voltage applied to it to ‘fine tune’ the velocity focussing.

Generally speaking, in VMI, the voltage ratios between the different plates are
what determine the focussing behaviour - rather than an ‘absolute’ voltage. As
such it is common to see voltages given as a repeller/extractor/third lens ratio,
rather than absolute numbers. The overall size of the image on the detector is
controlled by the repeller voltage, and the VMI condition will be maintained as
the repeller voltage is varied, provided that the voltages on the other electrodes
vary with it (maintaining the same overall ratio). Higher voltages on the repeller
lead to stronger focussing, so higher energy ions hit smaller radii on the detector.
As the detector is a finite size, this can be useful to ensure that the ion channel
of interest fills as much of the detector as possible. Controlling these voltages in
synchrony (using a computer) gives a rudimentary form of magnification of the
VMI image. The highest energy ion it is possible to focus is generally dictated
by the voltage that can be applied to the repeller plate without arcing4 - around 4Where a spark

bridges the gap between
plates - you will know
about it if this happens.

9 kV is generally possible with standard power supplies.
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1.2.1 Why VMI?

An obvious question is why this technique is called velocity map imaging, when
in reality it is not the ion velocities that are focussed, but the ion momenta. That
is, two ions with the same momentum will hit the same point on the detector
- whereas two ions of very different masses will hit different points even if their
velocities are the same. Therefore, we see that really ion momenta are mapped
onto the detector. Sometimes people often erroneously say that kinetic energy is
focussed rather than velocity - but this is even more incorrect than saying velocity
is focussed, as kinetic energy is a scalar quantity and therefore an image produced
where only kinetic energy is focussed would have no angular resolution.

The terminology, I believe, arises as follows. Clearly, for a given mass, ions
of different velocities will hit different points on the detector. These experiments
are normally performed by gating the detector such that ions of a specific m/z
ratio are the only detected ions. Within that specific mass channel, ions hitting
different points on the detector necessarily have different velocities - hence the
name velocity map imaging.

1.3 Electrostatic and Light Optics

Having understood an overview of how the VMI process works, it is now useful to
spend more time thinking about the nature of electrostatic optics, and particularly
which analogies can be made to light optics. The analogies are many, but there
are also areas where electrostatic optics are quite different to light optics.

1.3.1 Electrostatic Lenses

The simplest form of electrostatic lens is a single-element charged cylinder. In the
example previously, the cylinder was very short and with thick walls, so that it was
better described as an annular disc, but it was still a cylinder. While a detailed
discussion of the behaviour of many different types of electrostatic lenses is beyond
the scope of this document, below is a summary of the more useful underlying
physics to aid comprehension of the behaviour of a spectrometer. For a more
complete treatment see standard texts on electrostatic optics (such as Helmut
Liebl’s ‘Applied Charged Particle Optics’, or D.W.O Heddle’s ‘Electrostatic Lens
Systems’).

It can be shown that for a particle travelling through a field with potentials
V1 and V2 on either side, the ratio of the angle of incidence α1 to the angle of
refraction α2 is given by Equation 1.1

sin(α2)

sin(α1)
=

√
V1

V2

(
=
n1

n2

)
(1.1)
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The term on the right hand side is the ratio of the refractive indices of medium
1 and 2, and by comparison with Snell’s law (in brackets) it can be seen that√
V plays the role of refractive index in electrostatic optics. As should be known

from any introductory optics course, the refractive index determines the degree
to which a light ray entering a medium is refracted, or ‘bent’ upon entering the
medium. Clearly then, within electrostatic optics, a particle entering a region of
higher field will experience a greater force and be deviated (‘refracted’) by the
field more. This should intuitively make sense, at least on a qualitative level.

We can continue deriving equations of motion for the particle in a uniform
field, as is done rigorously in Liebl or Heddle, and arrive at various expressions for
the focussing properties of various electrostatic lenses. We will not discuss all of
these here, as it would detain us unnecessarily, but there are some useful points
to note that we will directly make reference to in several places.

Considering the generic cylindrical lens, it is clear that focussing effect of a
lens is larger (for a given lens geometry) if the voltage applied to the lens is higher.
Looking back to our picture with the ‘bulging’ field (in Figure 1.3), a larger ‘bulge’
will result in stronger lensing. Think of the equipotentials as forming the shape
of a conventional light lens5 - the more strongly curved the lens, the stronger 5Analogous as we

have seen that potential
V is proportional to n2.

the focussing power (and the shorter the focal length). This arises because for a
very curved lens, the angles α are correspondingly larger than for a very flat lens.
Decreasing the aperture diameter whilst holding the aperture voltage constant
results in a larger ‘bulge’, and therefore a stronger lens. This is illustrated in
Figure 1.5.

Weaker Lens Stronger Lens

Figure 1.5: Illustration of lens action - more curved lenses are stronger as the
angle of the incoming beam (red) to the surface normal (grey dashed) is larger
than for a less curved lens.
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Strictly speaking, the focussing power of a lens (focussing power ∝ 1
f where

f is the focal length), depends on the difference in potential on either side of the
lens. In most cases, the lens is placed in a field-free region, so the potential around
the lens is produced by the voltage applied to the lens. Clearly from the contour
plots in Figure 1.3, the stronger the field, the stronger the lensing effect - because
the difference between the potential caused by the lens and the field-free region
(zero potential) is greater. Electrostatic lenses are always converging, as (in most
cases) it is not possible to produce an equipotential pattern that is convex - as
would be required for a diverging lens.

Generally, electrostatic lens systems are made up of a number of different
lenses - in the same way that a camera lens contains many different individual
lenses. There is one type of lens that it is commonly used in ion imaging, the
so-called einzel lens or unipotential lens. This is normally a three-element lens,
where the potentials of the outer two electrodes are zero (grounded), and the
middle electrode has some voltage applied to it. This lens has the useful property
that it focusses the beam of charged particles without changing their energy. This
kind of lens is always converging, for the examples we will use. There are many
examples and designs of einzel lenses that can be found online or in books.

A useful approach to the mathematics of electrostatic lenses is made by using
transfer matrices. These matrices are analogous to the ABCD matrices that
may be familiar from light optics. Essentially the idea is that each element of an
optical system can be described by a matrix, which effects a transformation on
a vector which describes the initial position r (perpendicular to the optical axis)
and propagation angle α (relative to the optical axis) of a particle, for example
as: (

rOut

αOut

)
=

(
A B
C D

)(
rIn

αIn

)
(1.2)

This kind of formalism should be entirely familiar from courses on transformations
of vectors by matrices. In this case, the input and output vectors are obivously
labelled, and the matrix ABCD is effecting some transformation - most texts on
electrostatic optics will give lists of transfer matrices for various kinds of optical
elements.

The real power in the transfer matrix method is that it allows the effects of
multiple lenses to be decoupled from each other. For example, I would have an
input vector v that passes through several optical elements denoted by transfer
matrices M1,M2,M3. Then my output vector v′ would be given by Equation 1.3.

v′ = M3M2M1v (1.3)

Then, the action of individual elements, or simply removing one element, can be
easily calculated by changing which matrices are applied. The key point is that it
decouples focussing elements from each other. In our case, we will therefore treat
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the extractor-repeller region as distinct from any lenses further down the flight
tube. This simplifies analysis a great deal, but is also clearly a simplification, but
will generally hold provided that the fields from adjacent elements don’t interfere
with one another.

The derivations above have all been made under the paraxial approximation
- this may be familiar from light optics, but it essentially is an assumption that any
ray (or particle trajectory) makes a small angle to the optical axis - defined here
as the ToF (X) axis. Generally this angle is small enough such that sin(α) ≈ α.
When the angle is larger, the paraxial approximation is not valid and generally
aberrations (imaging errors) can become severe. However, we will see that many
VMI spectrometers currently in use clearly break this rule of thumb - in general you
will find that many texts and papers on electrostatic optics are vastly more con-
cerned with aberration control than we seem to be in doing VMI. This is because
in VMI, we are generally only looking at a single ion, or a very small range, and
so the effect of various aberrations (see later) is often not severe over the image
we look at6, or are actively desirable REF EPPINK AND PARKER. Most work on 6For an analogy to

light optics, if you’re only
looking at the blue parts of
an image, chromatic aber-
ration will never seem to
be an issue.

electrostatic optics is in fields like electron microscopy or ion beam manipulation,
where aberrations have a much more deletrious effect on the experiments than in
VMI.

This said, it is obviously best to avoid undesired aberrations if you can. The
next section details some common aberrations and how they appear in electrostatic
optics. For now, here is a set of ‘rules-of-thumb’ when designing ion optics (with
thanks to Steve Thompson!):

� Ensure that the beam energy (i.e. particle charge × repeller voltage) is
greater than any lens voltages - or you will create an electrostatic mirror,
rather than a lens!

� Keep the beam angle to below 10 mrad where possible, to ensure the paraxial
equation is valid and to minimise aberrations. This is often not possible in
VMI, however.

� Generally try to keep the lens thick in relation to the spacing between the
lenses - i.e. L < T where L is the distance between adjacent lenses and T
is the lens thickness. This ensures that focussing happens inside the lenses,
and not outside (JDP IS THIS RIGHT?)

� Try to keep the ions to within around 10% of D, where D is the aperture
diameter, to control aberrations. This is entirely analogous to light optics,
as any photographer will attest to - the edges of the lens are where it
performs worst.
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We will see that VMI ends up breaking a lot of these rules, as sometimes the
aberrations are actually desirable - but it’s important to have them in your mind if
trying to design improvements (even if you end up breaking them all eventually..).

1.3.2 Aberrations

Having discussed aberration control previously, it makes sense to define what
aberrations actually are. Simply, an aberration is just an ‘imaging error’ caused
by imperfections in the optics. There are two aberrations that it is useful to
know about in this context, and only one that we will really focus on. These are
spherical aberration and chromatic aberration. You may already be familiar
with these from light optics, and their behaviour in electrostatic optics is pretty
much entirely analogous to this.

Spherical aberration can be simply described as ‘rays travelling through dif-
ferent parts of the lens focus to different points’ - and is illustrated in Figure 1.6.
In electrostatic optics, this is entirely analogous, except rather than a light ray we
use a particle trajectory. Clearly, then, ensuring that most of the trajectories travel
through the middle of the lens would be ‘best practice’ and minimise spherical
aberrations.

Figure 1.6: Spherical Aberration - the top lens exhibits no spherical aberration,
the bottom lens exhibits severe spherical aberration. Figure from Wikipedia.

Chromatic aberration is something we will be (marginally) more interested
in, and can be simply described as ‘rays of different colours travelling through
the same point of a lens focussing to different points’, as illustrated Figure 1.7
(also from wiki). We will go further and split chromatic aberration into two kinds
- transverse chromatic aberration (TCA), and longitudinal chromatic aberration
(LCA). These cases are illustrated in Figure 1.7. Clearly TCA is where different
colours are consistently focussed to different radial points on the detector7. LCA7This is basically what

we want to do with VMI in
the first place!

is where different colours have different focal points along the optical (X) axis.
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Figure 1.7: Chromatic Aberration. Image 1 exhibits no chromatic aberration;
image 2 exhibits only longitudinal chromatic aberration; image 3 exhibits only
transverse chromatic aberration. Figure from Wikipedia.

The analogy to electrostatic optics in this case is that the colour of a light ray
is related to the photon energy, and so the particle energy is the analogue of colour
in this case. LCA is most deletrious for VMI, as it means that different photon
energies will be focussed at different points along the ToF axis (this corresponds to
a curvature of the Fourier plane - see later). This means that a set of voltages that
produce a well-focussed image of a 10 eV ion may not produce a well focussed
image of a 20 eV ion. If a wide range of energies are desired to be focussed
simultaneously, this aberration clearly is an issue. However, if only a single ion
channel (with a single energy) is of interest, then it is always possible to find
voltages that provide ‘ideal’ focussing for that channel. As we will see, many
VMI spectrometers have LCA that would be considered ‘bad’ in most imaging
systems, but we will also see that there are many other external factors that
reduce our possible resolution, such that that caused by LCA is generally not the
most pressing. LCA can be quantified using the chromatic aberration coefficent
Cc, which is defined Equation 1.4.

∆X0 = Cc
∆E

E0
(1.4)

Where ∆X0 is the longitudinal distance along the optical (ToF) axis between the
focal points for ions with an energy range ∆E. E0 is the energy of an ion in the
centre of this range. A plot of ∆X0 against ∆E

E0
should therefore be linear, with

a gradient Cc. This should make intuitive sense - it implies that for a given range
of particle eneriges ∆E, the chromatic aberration is worse if ∆X0 is larger.

I mentioned also, and it is clear from the figure, that TCA looks quite a lot
like what we actually want VMI to do - to map different energies onto different
parts of the detector. This links to all the stuff I implied earlier about the paraxial
approximation breaking down - and this is documented in the literature REF
EPPINK. In one sense, VMI requires that the paraxial approximation breaks down
in order to map ions with different energies to different points on the detector -
which would be considered severe TCA in conventional ion optics. This is one
way to approach thinking about VMI, and helps to justify how almost every rule
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of ‘best practice’ I have listed is broken by almost every VMI spectrometer in
existence.

We will keep aberration control in mind when designing things, but also be
aware that the system we are trying to design is not one that would be considered
‘good’ by a lot of imaging standards. We are not trying to focus a paraxial
beam, so a lot of the aberrations and rules of thumb that apply to these systems
are not appropriate for what we plan to do. Nevertheless, there is still value in
understanding what ‘rules’ you’re breaking, and why you break them.

1.3.3 Analogies between Electrostatic and Light Optics

We have already seen that
√
V in electrostatic optics plays the role of refractive

index n in light optics. Here we summarise some of the more useful analogies and
key differences.

� Useful Analogies

–
√
V → n

– The Lensmaker’s Equation (Equation 1.5) from classical optics will
prove interesting. Here I deliberately omit some detail which only ap-
plies to light lenses under certain circumstances, but the overall form
of the equation is most relevant. f is the focal length of the lens, P is
the optical power of the lens, n is refractive index, and R is the radius
of curvature of the lens.

1

f
= P ∝ (n)×

(
1

R

)
(1.5)

A stronger lens (higher P ) will have a short focal length. Clearly, a
higher refractive index results in a stronger lens (i.e. flint glass vs
crown glass, for the glass aficionados among you). Equally, a smaller
radius of curvature - i.e. a more obviously curved lens - will produce a
stronger lens. This is exactly as we have already seen in electrostatic
optics - where a higher voltage applied to a lens resulted in stronger
focussing action, and a smaller aperture (more ‘bulging’ field) resulted
in a stronger focussing action. Overall, then, higher lens voltage →
stronger lens, and smaller lens aperture → stronger lens.

– Colour of light→ particle energy. Colour of light is just the photon
energy, so this makes sense.

� Key Differences

– Generally, you cannot make a diverging electrostatic lens (at least when
the lens is bounded by regions of constant potential). This means that
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a simple achromatic doublet (as familiar in light optics) is not so simple
in electrostatic optics.

– Aspheric lenses are much more difficult to produce, and generally re-
quire use of multipole geometries. For all of the work we will do here,
the lenses will be of the simple cylindrical type - which have the ad-
vantage of being much easier to produce for workshops. Some VMI
spectrometers have been built with interestingly shaped electrodes,
which will be discussed in due course. That we cannot easily produce
aspheric lenses puts limits on how effectively we can control aberra-
tions. Generally in light optics aberrations are corrected using a wide
array of aspheric lenses.

– The range of possible particle energies is absolutely massive in com-
parison to the range of photon energies generally used in light optics
(particle energies from 0.1 eV to 100 eV are not uncommon, whereas
the visible spectrum is only around 1 eV to 3 eV). This means elec-
trostatic systems have to be designed to work for a wider range of
acceptance energies, which fortunately is possible as it is possible to
vary the voltage applied to an electrode over a much wider ranger than
it is possible to vary the refractive index of a glass.

– As mentioned at the end of the previous section - we are not (in VMI)
trying to focus a paraxial beam. So it is important to be aware that
a lot of the concepts and metrics that are derived from the paraxial
approximation may not be appropriate for VMI.

Having discussed some basic electrostatic optics, let us now try to discuss how
VMI works with this analogy in mind, and try to develop an intuitive useful model
we can use to guide our thinking later

1.3.4 Fourier Optics → Velocity Map Imaging

Fourier optics is an alternative way (compared to ray optics) to analyse and un-
derstand light optics using Fourier transforms. Ray optics (or geometrical optics)
treats the light as simply ‘lines’ that propagate through a system and change
their angles (wrt the optical axis) as they undergo refraction. Ray optics does not
account for the wave nature of light, so cannot explain phenomena like diffraction
or interference. Fourier optics accounts for the wave nature of light, and so can
explain these phenomena. The drawback of Fourier optics is that it is not as
intuitive as ray optics.

To see how Fourier optics works, it’s worth considering what a Fourier trans-
form really does, and what it physically means. To do this, let’s first look at a
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generic Fourier series of a function f(t).

f(t) =
∑
ω

cn(ω) · exp (iωt) (1.6)

From this expression, it is clear that the term exp (iωt) is simply a plane wave,
which can be understood by writing the exponent in terms of sine and cosine.
The plane wave this defines has an angular frequency ω, and therefore has an
energy ~ω. The cn(ω) term can be simply regarded as an expansion coefficient,
which varies depending on the exact ω in the sum. What we have effectively
done, therefore, with this Fourier series, is expand f(t) as a sum of different plane
waves of different frequencies. Alternatively, you could think of it as expanding
f(t) in different basis set, the basis set of frequencies (in the same way you
can write vectors as a sum of different components of unit vectors). So we are
taking a function of time, and writing it as a superposition of waves with different
frequencies - this should be familiar behaviour of a fourier series.

The Fourier transform, as opposed to series, is defined analogously but as an
integral rather than a sum. For example:

f(t) =

∫ ∞
−∞

c(ω) · exp (iωt) dω (1.7)

An obvious question is what the form of the function c(ω) is. It turns out that
we can write:

f(t) =

∫ ∞
−∞

F (ω) · exp (iωt) dω (1.8)

Where:

F (ω) =

∫ ∞
−∞

f(t) · exp (−iωt) dt (1.9)

These last two equations are the most common statements of the Fourier trans-
form. Generally, Equation 1.8 is defined as the inverse Fourier transform,
whereas Equation 1.9 is defined as the Fourier transform. The two functions f
and F form a Fourier transform pair. Again, the key point for our discussion
here is to note that essentially what this achieves is writing the function f(t) in
terms of it’s corresponding frequency (ω) components, in the same way that one
might write a vector as a sum of different components. Fourier optics, then, is
just an approach to analysing the behaviour of light optics by treating the light
as a combination of different plane waves with different frequencies - as opposed
to geometrical optics (or ‘ray optics’), where light is treated as a line that propa-
gates in the same direction of a light wave. This is why geometrical optics cannot
account for phenomena such as diffraction or interference - which arise due to dif-
ferent components of the light interacting in a way that depends on their relative
phase.
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There is no reason why the mathematical machinery of the Fourier transform
is limited to transformations between the time and frequency domains (although
this is perhaps the most common use). Infact, the variables momentum and
position form another Fourier transform pair8. There are lots of nice analogies 8In general, the units

of the two variables in the
pair must be reciprocal.
This is true for position
and momentum to within
a factor of ~. If position
is measured in m, then
momentum is measured in
kg m s−1. Momentum di-
vided by ~ will have units
of m−1. We are free to do
this as the Fourier trans-
form doesn’t specify the
scales of either of our vari-
ables - so we are fine to
just divide out momentum
by ~ in this way.

between this and the Uncertainty Principle (note that time and energy (frequency
×~) have an Uncertainty relation), but these are beyond the scope of what we
do here. That position x and momentum p form a Fourier transform pair is
interesting, as this can help us understand the action of a VMI spectrometer.

A useful starting point here is to consider diffraction by a prism. This disperses
the frequency components of the light, and is effect performing a 1D Fourier
transform of the incoming light (separating it out into different frequencies). This
is illustrated in Figure 1.8.

Incoming White Light

Prism

Colours Dispersed

Figure 1.8: Diffraction by a prism. Incoming white light is separated into different
frequencies (colours). This is performing a 1D Fourier transform on the incoming
light, decomposing it into it’s different frequency components.

We can extend this argument and consider diffraction through a slit, or small
hole. This produces well known diffraction patterns, and the maxima and minima
arise from constructive and destructive interference of plane waves with different
phases. The plane waves all enter the slit at different angles θ, and the separation
of the peaks in the diffraction pattern is proportional to 1/d where d is the size
of the slit (i.e. smaller slit leads to stronger diffraction). 1/d will have units
of inverse length, and is equal to sin θ/λ9. This should also intuitively make 9As d sin θ = λ for the

first maxima.sense - a wider range of input angles leads to a larger separation of peaks, and
shorter wavelength waves diffract more strongly (why lenses tend to focus blue
light harder than red light). The quantity 1/d is called the spatial frequency -
that is, how often the peaks repeat per unit distance. Think of it as analogous
to normal frequency (sometimes called temporal frequency to differentiate it)-
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that is the reciprocal of time (units of cycles per unit time). Spatial frequency
is the reciprocal of position (units of cycles per unit length). ADD FIGURE OR
SOMETHING

Fine, but how does all of this relate to Fourier transforms? Well, it turns out
that the diffraction pattern (in the far-field, so Fraunhofer diffraction) is ‘simply’
the Fourier transform of the input field across the diffracting object. That is, from
the diffraction pattern it is possible to reconstruct an image of the diffracting
object10 - just as is commonly done in X-ray crystallography or image analysis.10If you have all of the

information (phase and
power spectrum) from the
Fourier transform avail-
able.

Let us now spend some time getting bogged down in units and dimensions.
We have seen that position and momentum form a Fourier transform pair, but I
just basically implied that position and spatial frequency are a Fourier transform
pair. This implies that spatial frequency and momentum are related - which they
are! Clearly they have the same units (to within a multiple of ~), so if we are
mapping spatial frequency onto a screen, we’re also mapping momentum onto a
screen. In the case of Fraunhofer diffraction, the momentum is the momentum
of the light, as defined by it’s direction (θ) and energy (∝ λ) - infact you could
define spatial frequency as ωs = theta

λ
11. What is happening is that the different11In the paraxial

approximation where
sin(θ) ≈ θ.

momenta in the incoming wave are being mapped onto a screen, this screen is
called the Fourier plane, and we have effected a transformation from position
space to Fourier space, and in this case, Fourier space is really momentum
space. Or k-space if you’re into physics.

So, to take stock, we have seen that diffraction can effect a Fourier transform,
turning position space into momentum space. This diffraction can be performed
by a lens, as is illustrated in Figure 1.9. The lower panel of this figure shows
that a light beam made up of different plane waves each with different angles to
the optical axis (i.e. each with different spatial frequencies) is dispersed by the
lens such that each plane wave focusses to a specific point in the focal plane.
To make an analogy to light optics, beams with higher divergence will focus to
larger spots when focussed by a lens - as the higher divergence → larger angles θ
→ larger spread in the x direction in the focal plane → larger focal spot. We are
now in a position to think about VMI as Fourier transform process.

In VMI, we take ions with a certain spatial distribution in a source region (the
‘source plane’), and map their momentum distribution onto a detector (the Fourier
plane). This transformation is effected by a lens, and provides an intuitive way to
understand VMI. Really, the VMI spectrometer is a Fourier transformer - mapping
the ion momenta onto a screen, irrespective of where they were formed. This is
akin to decomposing the initial source distribution into it’s various momentum
components, and mapping them onto a sphere. The VMI spectrometer is
performing a Fourier transform on the initial source distribution, to extract
the momentum distribution.
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Figure 1.9: Top: A plane wave travelling through a lens at a given angle θx will
be focussed onto a specific point x on the focal plane. Bottom: A light beam
composed of many plane waves will result in many different spots on the focal
plane - the lens decomposes the incoming beam into plane waves with different
angles θ to the optical axis. These angles are essentially spatial frequencies (see
above). Figure adapted from Saleh and Teich ‘Fundamentals of Photonics’.

To continue the analogy from above, we said that the momentum was pro-
portional to sin θ/λ. For ions, θ is their emission angle away from the optical axis
(if we consider a 1D case - as in the figure - for simplicity). And ‘λ’ in this case is
inversely proportional to particle energy. Therefore, in our VMI image, we expect
that the angle to the optical axis at which an ion is travelling to be mapped onto
our detector12, which it is. We also expect ions of higher energies to be mapped 12Strictly it is mapped

into a 3D velocity dis-
tribution, which is then
mapped onto the detector.

onto higher spatial frequencies - so to hit further out on the detector, which is
also what is observed.

The creation of this Fourier plane has interesting connotations - firstly in terms
of magnifying the VMI image. We can (using the transfer-matrix method) treat
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this Fourier plane as a ‘new’ source plane, and then use electrostatic lenses to
‘zoom’ in or out of this image - more later. Secondly, there is possibly information
to be gained by applying the mathematics of Fourier theory to the VMI image.
This is not something that I am aware of in the literature. For instance, in an
analogous way to crystal diffraction it may be possible to extract information
about the source distribution from the velocity-mapped image.

VMI Fourier Planes

Typically in VMI, the position of the ideal VMI focus along the ToF direction
depends on the energy of the ion being measured. For a given set of voltages,
generally the VMI focal point13 for a high energy ion lies further away from the13Defined as the posi-

tion along the ToF direc-
tion where ions produced
with the same momenta
all arrive at the same point
(or where the circle of con-
fusion is smallest).

detector than for a low energy ion. This results in a curvature of the Fourier
plane. This is illustrated in Figure 1.10.

Figure 1.10 (a) shows a SIMION workbench where ions with energies from
3 eV to 30 eV are flown with the same velocity from different source positions.
Each colour corresponds to a unique ion energy. The ions were born either 1 mm
above or below the central ToF axis, this is drastically worse than a realistic
source distribution (as in reality the laser spot is around 50 µm in diameter), but
illustrates the idea of the Fourier plane well. Figure 1.10 (b) shows a zoom of the
region near the detector with black circles placed at the VMI focal points for each
ion energy. There is a clear and dramatic curvature of the plane away from the
detector at higher energies. Figure 1.10 (c) shows the same zoom as in (b), but
now the source positions are only 0.1 mm above or below the central ToF axis.
This clearly makes the curvature of the Fourier plane all but invisible - showing
that under realistic experimental conditions this effect is essentially negligible.
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(a)

(b)

(c)

Figure 1.10: Illustrating the concept of a Fourier plane within VMI. (a) A work-
bench showing a test setup for visualising the Fourier plane. Ions are born 1 mm
either side of the central ToF axis, with a range of energies (each colour is a
unique energy). (b) A zoom of the region near the detector, points where isoen-
ergetic ions from different source positions cross (VMI focal points) are marked
with black circles. (c) The same zoom as in (b), but with a realistic source region
size.





Chapter 2

Spectrometer Design

A VMI spectrometer for the new ultrafast imaging instrument in the MBB group
needs to be designed and built. This spectrometer will initially be used for velocity-
map imaging of the nascent ions from Coulomb explosion of neutral molecules,
induced by femtosecond laser pulses. Ultimately it will also be used for imaging
of ions from the explosion of larger molecules that are brought into the gas-phase
via electrospray ionisation.

2.1 Requirements

The requirements for the spectrometer are fairly typical of many similar instru-
ments. They are outlined below.

� Physical Constraints

– Spectrometer must fit inside the planned interaction chamber (CF200
- 200 mm ID). As such the diameter of the plates cannot be larger
than around 180 mm to avoid arcing to the chamber.

– Spectrometer must achieve metrics (below) using a 40 mm effective
area MCP detector.

� Experimental Capabilities

1. Spectrometer must be able to resolve energy differences on the order
of 0.1 eV clearly.1 1Michael should be

aware that this request is
meaningless without say-
ing 0.1 eV in something
else. 0.1 eV out of 100 eV
is very different to 0.1 eV
out of 1 eV.

2. Spectrometer must be able to clearly resolve mass peaks separated by
1 Da over a reasonable mass range - in practice this requires a m

∆m
resolution of at least 500, and probably substantially more.

3. Spectrometer must be capable of operating in a ‘slice-imaging’ mode,
where the Newton sphere is stretched along the ToF axis to facilitate
slice imaging.

23
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4. Good velocity mapping must be maintained down to small image radii,
as imaging of large, slow-moving ions is expected ultimately.

Addition of a zoom lens to enable the lower-energy portions of the image to be
magnified is also a desired addition (more later).

2.2 Definition of Metrics

Simulation of the spectrometer was performed using SIMION. Several metrics were
mentioned above as ways to characterise the performance of the spectrometer.
They are defined in more detail below.

2.2.1 Energy Resolution

The fundamental principle of good velocity-mapping2 is that an ion produced with2Here we use the term
‘velocity-mapping’ not
‘momentum-mapping’ to
be consistent with previ-
ous literature. Although
maybe people just doing
this for consistency is
what led to the current
shitshow of nomenclature.

a unique momentum vector in the detector plane (here the YZ-plane) should
be ‘mapped’ to a unique radius on the detector. That is, that there must be
a near-perfect correlation between the initial momentum vector in the detector
plane vDET of an ion, and the radius rDET it hits on the detector. As such, the
parameter used to assess how good the velocity mapping is is the squared Pearson
coefficient R2 of these variables, to assess the goodness-of-fit of a plot of vDET
and rDET . Typically an R2 value greater than 0.99 was considered good.

This parameter gives a measure of how good the velocity-mapping is, but
doesn’t quantify the actual energy resolution - i.e. how small of change in ion
energies is resolvable. The energy resolution is conventionally defined as ∆E

E where
E is the ion energy and ∆E is the spread of particle energies. This formula can
be easily linked to the experimental observable R (image radius), by noting that
E ∝ R2, such that ∆E

E = 2∆R
R . Thus the velocity resolution can be calculated

by measuring the radius that a particle with a particular initial energy hits, and
measuring the spread of different radii that a particle with that energy hits.

There are many definitions of ∆R given in literature - some define it simply
as the range of the distribution of radii that a given particle energy hits (i.e.
Rmax − Rmin) (Kling2014ThickLens). Others define it as the FWHM of the
peak in a plot of ion yield vs radius (Marchetti2015Thiophene) of a pancaked ion
distribution, and others use the standard deviation of a Gaussian fit to the peak
profile. Still others produce a simulated ion image which is then subjected to an
Abel transform to extract the 3D momentum distribution from the 2D image,
from which an energy spectrum is plotted and the ∆E is obtained directly as the
FWHM of a Gaussian fit to the spectrum (Rading). Conceivably, one could also
simulate an ion image and then take the central time-slice in SIMION and find
the width of this peak.
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Of these methods, as far as I can tell the best method is to simulate an ion
image, perform an inverse Abel transform and then fit the peaks in the resulting
radial distribution. Initial attempts demonstrated to me that not accounting for
the projection of the 3D Newton sphere onto the detector meant that finding
an accurate peak width was difficult and likely to cause an inaccurate value for
the resolution (especially as generally experimental images are inverted anyway).
Finding the central slice in SIMION is straightforward in principle, but requires
that you are able to pick out the central arrival time from the distribution of ions
along the ToF axis. This is, in itself, trivial - but doing this in a computationally
robust way would require that you deconvolute the projection of the ellipsoid
Newton ‘sphere’ onto the detector from the arrival time distribution, which is
non-trivial (at least for a mediocre mathematician like me).

The method used here was to simulate an ion image, perform an inverse
Abel transform using PyAbel, and then integrate over the angular coordinates to
produce a distribution of ion yield against radius for the inverted image. Then the
widths and locations of the peaks in this distribution can be reliably determined
using a peak picking algorithm. Fitting each peak to a Gaussian is also possible,
but it seemed to me unnecessary to add this extra possible source of error when
there are sufficient statistics to determine the peak widths directly (as the data
are simulated anyway).

2.2.2 Mass Resolution

Mass resolution is conventionally defined as m
∆m , where m is the mass of the

particle and ∆m is the uncertainty with which m is determined. Higher values
of this ratio correspond to better mass resolution (as ∆m is smaller). This is
equivalent to t

2∆t as m ∝ t2. Thus, the mass resolution can be measured by
taking an arrival time distribution and finding the mean t and standard deviation
∆t - approximating the distribution as a Gaussian is normally appropriate.

While this is generally how mass resolution is defined in more traditional imag-
ing mass spectrometry experiments, there is a difficulty in applying this definition
to a VMI experiment. The arrival times of the ions in VMI do not immediately fol-
low a straightforward Gaussian distribution. In reality, the Gaussian is convoluted
with the projection (along the time axis) of the ellipsoid ‘Newton Sphere’ onto
the detector. Deconvolution of this ellipsoid projection in a rigorous way should
be possible, but lots of time has not been spent on this here3. Mostly, we will find 3Somebody better at

maths than me can proba-
bly do this in about 10 sec-
onds.

a setup which gives good velocity resolution and then confirm empirically through
SIMION that the mass resolution is within the required range. The bottom line
is that we need to be able to have isotopic mass resolution - but as almost every
VMI spectrometer I’ve seen has this, I don’t think it is a critical parameter to
work on, and it can always be improved by adding (cheap) flight tube such that
the ions diverge in time more before they hit the detector.
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2.3 ‘Experimental’ Setup

All simulations were performed in SIMION 8.1.1.32. Analysis was performed either
using a Lua workbench program or Python.

2.3.1 Workbench

The backbone of the workbench was a grounded tube of internal diameter 200 mm,
reflecting the CF200 chamber. The ion optics were contained within this tube,
and a 40 mm MCP detector was mounted in one of two places. Either mounted at
the end of the interaction chamber (to simulate having no additional flight tube),
or mounted at the end of a 500 mm flight tube. Having this flexibility in the flight
tube greatly extends the usable range of particle energies that can be imaged, as
will be seen later. The lengths of the flight tube was arbitrarily chosen to be a
length that will be easy to machine in a workshop. It is not critical, however, as
any slight (mm) deviations from the SIMION geometry can be easily corrected by
using slightly different voltages.

The coordinate system has already been defined. The ToF axis is the X-axis,
the molecular beam also propagates along the X-axis, and the laser propagates
along the Y-axis, such that the XZ-plane is the polarisation plane. The YZ-plane
is the detection plane, and it is velocity within this plane that will be measured.

The workbench geometry was defined in a .gem file, which provides a flexible
and repeatable way to define the electrode geometries. SIMION creates poten-
tial arrays (‘PA’) built up of a number of ‘grid points’, and each point stores
geometry and potential information. By applying different geometry and poten-
tial information to every grid point, the full workbench is built up. The scaling
between real space (millimetres) and grid points (grid units) is (by default) set
to 1 mm gu−1. However, even with electrode surface enhancement (see manual)
turned on, this does not allow sub-mm or fractional mm spacings to be defined.
Therefore, throughout these simulations we instead use 10 mm gu−1, for increased
precision (at the cost of a larger and slower simulation).

2.3.2 Particles

SIMION requires that the ions to be flown in the simulation are defined in a .fly2
file before running. As there are several metrics that need to be assessed, it is
necessary to define multiple sets of ions to rigorously explore the capabilities of
a spectrometer. As such, I define multiple sets of ions to determine the velocity
resolution, mass resolution, and to assess how it might behave under typical
experimental conditions. In this section I detail the different sets of initial ions,
but there are some parameters common to all the ions.
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2.3.3 Common Parameters

Ionisation Source

All ions are assumed to be created instantaneously and at the same time (reflecting
the femtosecond timescale ionisation). The shape of the region that the ions are
produced in is modelled by a 3D Gaussian function, reflecting the intersection of
the laser focus and molecular beam. This Gaussian is located at the center of the
interaction chamber (internal workbench coordinates (175, 0, 0)), reflecting the
location of the windows.

The laser is assumed to be an 800 nm Gaussian beam of initial diameter
(1/e2) 6 mm that is focussed by a 300 mm lens to produce a focal spot size of
25 µm×25 µm (ω0 × ω0). This is fairly typical of Coulomb explosion imaging
experiments. The beam waist ω0 is simply the point at which the transverse
intensity in the the xy-plane (polarisation plane) drops to 1/e2 it’s maximum value
(assuming a circular beam profile), and is measured at the point at which the beam
is smallest. This is the 2σ width, so half of the ω0 value defines the standard
deviation of the 3D Gaussian in the xy-plane.

The width of the 3D Gaussian along the propagation axis (x) of the laser
beam can be estimated by taking into account the variation in spot size along the
propagation direction of the beam, and the width of the molecular beam along
this axis. For a Gaussian beam with beam waist ω the intensity varies along x as:

ω(x) = ω0

√
1 +

(
x− x0

xR

)2

(2.1)

Where x0 is the location of the focus, and xR is the Rayleigh Length, given by
the location where the spot size is

√
2 larger than at the focus4, such that: 4i.e.

√
2 larger than

ω0.

xR =
πω(x0)2

λ
(2.2)

Where λ is the wavelength of the light. The beam parameters given create a
Rayleigh length of xR =2.4 mm. This would give a standard deviation of 1.2 mm
for the 3D Gaussian if it was interacting with a uniform region of gas density.

However, the finite width of the molecular beam means that not the entire
Rayleigh length is able to produce ions. The gas pulse has passed through a
1 mm skimmer, and is assumed to be collimated such that the gas density in the
x-direction is described by a Gaussian function with (1/e2) width (2σ) of 1 mm.
To account for possible non-uniform collimation, the standard deviation of the
Gaussian describing the region of ion production in the x-direction was set to
0.75 mm. The parameters describing the 3D Gaussian describing the region of ion
production are summarised below.
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Coordinate Mean (mm) Standard Deviation (mm)

x 175 0.75
y 0 0.0125
z 0 0.0125

As will be seen in due course, the closer the ionisation source is to being
a point source, the better the velocity mapping performance. One of the main
advantages of ‘fancier’ designs incorporating aspheric electrodes (or similar) is
that they allow a much larger ionisation source to produce good spectrometer
performance. The ionisation source chosen here was chosen to be realistic, but
errs on the side of being large - so we are hopefully getting a realistic ‘minimum’
performance from simulations (or at least, the real interaction volume should be
smaller than this - and could be easily made smaller than this by focussing the
beam harder).

Ions

SIMION allows the definition of the ions flown in each simulation in a .fly2 file.
This all relevant parameters (positions, velocity vectors, energies, masses, charges)
for all flown ions to be set in a robust and flexible way.

For general testing, a set of 1000 ions with a mass of 28 Da and charge of 1 e
was used (this being a pretty ‘average’ ion that falls in the middle of the general
usable range). This number of ions is sufficient to determine the R2 coefficient
for a given geometry. For more refined tests a variety of ion masses were flown
- detailed in the relevant results section. In general when testing for velocity
resolutions a large number of ions need to be flown to perform a reliable Abel
inversion - normally 20000.

2.4 Geometry Optimisation

In designing a VMI spectrometer, there is a very large parameter space that
can be explored. The parameters that can be tuned include the geometries of
each electrode (generally the outer and aperture diameters for conventional ‘disc’
shaped electrodes - but also other geometrical parameters for differently shaped
electrodes); the spacings between neighbouring electrodes; the voltages applied
to each electrode; and the overall geometry of the spectrometer. Many of these
parameters are interdependent - by analogy with classical optics it is clear that
moving a lens has a similar effect to changing the strength of the lens - so thor-
oughly exploring this parameter space is challenging.
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2.4.1 Genetic Algorithms - yay or nay?

An initial way to try to get a feel for this parameter space is to employ a genetic
algorithm. This algorithm creates a wide number of different spectrometer designs
and tests them all against a certain metric - the metrics are then compared and
the ‘fittest’ designs are then used to generate new designs, in a manner akin to
biological selection. This process is iterated until a fittest design is produced. The
optimised metric in the simulations was the goodness of fit between the initial
velocity vector and the final position on the detector, as discussed previously. In
tests 1000 ions were flown per geometry to be optimised, which is sufficient to
establish the R2 parameter and see how good the geometry is.

I haven’t attempted to plot and document the result of every single GA run,
as this would be very dense (and some the data failed to save due to some of
SIMION’s many quirks). However, I want to summarise the results of my testing
here and document some useful/interesting results. This is mostly based on many
days/weeks of running things to get a feel for how it works - I wasn’t attempting
to rigorously document things at this point.

� Trying to get the GA to optimise electrode spacings, apertures, and volt-
ages is a very computationally intensive task. Having four electrodes (from
the Townsend design) means that there are four apertures, five spacings,
and four voltages to iterate through (keeping all plates the same thickness).
Optimising these with millimeter (not even sub-millimeter) precision creates
an enormous parameter space that takes a very long time to iterate through.
Refining a PA with appropriate grid unit precision5 can take up to 60 s - 5Normally 10 grid

units per mm.when added to the time for ions to fly and data to be analysed/written,
each iteration can take between two and 5 minutes. To thoroughly explore
the parameter space would require many hundreds, if not thousands, of iter-
ations to be run - and the computational time quickly becomes impractical.

� However, an obvious rebuttal to the previous point is: ‘If you can just let it
run, why not just leave it and let it work it out? ’. My testing has led me
to the conclusion that the results of the GA are not particularly reliable.
That is, you can run the same parameter set (with a very large number of
iterations), and produce different (good) results every time. This is, I think,
due to the following reasons:

– The #1 reason: many different geometries can produce good
velocity mapping if appropriate voltages are set. That is, if you
allow the voltages and the geometry to vary (and voltages are always
variable in a lab), then many geometries can give good spectrometer
performance. There is no one perfect geometry. This intuitively
makes sense (see below).
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– Thinking about ion optics and the effect of electrode apertures/voltages
on the lensing effects (from the first chapter) - clearly a lot of these
effects are interdependent. For instance, you could make an aperture
smaller and make an electrode a stronger lens - or you could simply
increase the voltage and keep the aperture the same size. Both of
these could have an equivalent effect on the field lines. Optimising
them together therefore seems inefficient.

– The parameter space is sufficiently large that even a very large simu-
lation fails to adequately cover it.

� To illustrate this somewhat, here is some anecdotal6 evidence of things that6Feel free to run them
yourself if you want the ac-
tual numbers.

the GA has optimised:

– Starting with the DC slicing geometry, running the algorithm twice
with a wide parameter space and a large number of iterations gave
two different geometries, each of which were subtly different from the
starting geometry. The same performance could have been achieved
by taking the starting geometry and just optimising voltages.

– Running the GA to determine the best possible size and shape for a
spherical extractor electrode concluded that the best possible shape
was just an annular disc (not spherical). Running it again produced
the result that a slightly curved electrode produced essentially the same
performance.

– Allowing more flexibility in electrode spacings resulted in the ‘best’
VMI occurring when two of the plates overlapped.

� Clearly some of, or all of, the above problems could result from user error.
Clearly letting the GA produce an unphysical geometry is poor programming
on my part, however I think it serves to illustrate my main point which is that
you should not just run the GA and think it will optimise everything
for you.

� Perhaps doing a more refined simulation where many parameters (not just
the R2 value) are optimised simultaneously would lead to better results. But
this seems like even more of a ‘ram it all in and wait’ type of approach, so
I am sceptical.

With all this in mind, I would say that I do not think that the genetic
algorithm is an appropriate tool for this kind of simulation. I think a better
approach is to be guided more by the principles of electrostatic optics, and to try
and optimise things ‘by hand’ as best you can. The fact that many geometries
produce good performance means that the GA may well find you a good geometry
- but it will stop you learning about how these things actually work if you accept
what it tells you unquestioningly. My personal preference is to optimise geometry



2.4. GEOMETRY OPTIMISATION 31

manually and then run a simple simplex optimiser (there is an inbuilt SIMION
library for this) to optimise the voltages on the plates for a given geometry. This
is a much more ‘hands on’ approach and I think it gives a much better feel for
how these electrostatic optics really work.

This is not to say that the GA is useless - genetic algorthims are widely used
in many areas of the natural sciences. Within spectrometer design, I can imagine
it being useful in design of a very non-standard spectrometer, but only if used
sparingly to optimise small parts of the geometry. Trying to ram everything into
it and optimise everything at once is, I think, a quite lazy approach to this kind
of problem. Overall then, in answer to the section heading - I would say a strong
‘nay’, at least to this specific problem.

2.4.2 General Observations Regarding Geometry

It is also worth stating here about the link between spectrometer geometry and
overall performance. Extensive simulation suggests to me several things7 7Again this was

mostly all learnt during
my ‘playing around
with it’ phase and isn’t
rigorously documented.

� It is almost always possible to make any geometry produce good velocity-
mapping for a single ion species with a single energy, by choosing appropriate
voltages for all electrodes.

� Geometry of the spectrometer has more influence on the quality of velocity-
mapping over a wider range of particle energies than the absolute energy
resolution possible. That is, a ‘good’ spectrometer geometry will produce
good VMI over a wider range of particle energies (using a constant set of
voltages) than a ‘poor’ spectrometer geometry. Therefore, one can expect to
get better VMI over the entire image using a better spectrometer geometry,
as the curvature of the Fourier plane is lower. This means that a wider
range of initial particle energies are accurately mapped (LCA is lower).

� This being said, it seems that almost any array of annular disc electrodes can
produce VMI that is as good as that obtained in a ‘standard’ spectrometer
(e.g. Eppink + Parker), provided the voltages are correctly chosen such that
the Fourier plane of a certain ion coincides with the detector. More complex
designs involving curved, aspheric, or conical electrodes (Marchetti/Wrede)
can reduce the curvature of the Fourier plane and produce good VMI across
a wider portion of the image, or can mean that a larger interaction region
can be used to produce good VMI (in general if the interaction region is
larger, then the VMI mapping is worse).

� However, design of these electrodes can be complex - and in most cases
is performed with professional assistance from companies that specialise in
electrostatic lenses. In addition to this, for the experiments planned in the
MBB group, the limiting factor will not be the spectrometer performance.
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These high-resolution spectrometers (see, for example, the Velocitas ‘Dou-
ble Prime’ spectrometer), find most applicability in narrowband experiments
where exceptional energy resolution is needed - velocity resolution of around
1% is attainable, and at this point is limited by the properties of the molec-
ular beam. In contrast, the typical designs I have optimised tend to have
velocity resolution of <5%, and using a non-ideal8 molecular beam, and a8Not an Even-Lavie

Valve. broadband laser source mean that it is unlikely we will be limited by this.

� Reducing the curvature of the Fourier plane is obviously a good thing to do,
but again I think the benefit gained by doing it would be pretty marginal.
In the end slight asymmetry in the manufacturing, and the finite pixel res-
olution of the imaging camera will mean that the difference in focussing
caused by the curvature will not really be visible in a realistic experiment.

The above considerations lead me to think that the best thing to do is to use
an existing design (such as the DC slicing design), and then see if it meets the
requirements we have set. Whilst this probably isn’t producing the theoretically
best spectrometer anyone could possibly design, it will most likely be more than
sufficient for our needs, and will certainly have a very good resolution over a
reasonable range (if not the largest possible range).

2.4.3 Getting SIMION To Do What You Want

As I would not wish the 16 weeks of rage-inducing SIMION learning which made
me continually want to rend down my facial features in hot quicklime rather than
continue being employed on anyone, I will try to document some tips and tricks
that I’ve learnt here.

� SIMION is very logical, but also hates you.

� Spending time learning how to use Lua for user programming is the best
use of time in the beginning. You can make SIMION produce a working
spectrometer very quickly (I did this in one day), but you need to produce
that spectrometer programatically if you want to do serious optimisation.

� Learn to use .gem files rather than the ‘modify’ screen to design potential
arrays. While it seems a bit daunting (and the documentation is a bit hit
and miss), it is much easier ultimately to be able to change spacings and
things in a program rather than by counting pixels on a screen.

� SIMION’s inbuilt data recording works, but I found recording all the data via
a user program to be much more intuitive and easy. You can then relatively
easily interface the Lua script with python which is much better than Lua
for data analysis and plotting. My preferred workflow was: Fly ions→ write
data to a temporary file→ load file into Python for processing and plotting.
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� A Lua script you write for a user program is not executed line-by-line in the
way you might expect. The functions in each segment are executed in the
order defined by the SIMION Flow Diagram. This caused confusion to me
initially and other students, as not every SIMION variable is accessible in
every function - so it is worth getting the manual (for some reason paper
copies only..) to see the scope that each variable has.

� For some reason on my MBB computer, SIMION wouldn’t let me save and
reload a workbench (giving an error about a corrupted PA). I never fixed
this and nor could David Manura on the help forum - a workaround was to
put your working SIMION directory in the MBB Q drive.

� The SIMION Users Group (on the website under ‘community/support’) is
really helpful, and David Manura (developer) actually answers questions
actively and helpfully. Use it. Simple questions also don’t seem to get
sarcastic responses from insecure physicists that you see on stackexchange.

� If you rename a workbench to the same name as an existing .lua file, then
SIMION sometimes overwrites that .lua file with the .lua file that was as-
sociated with the previous workbench. This can be annoying if it happens
to you.

� While the SIMION manual says that turning the trajectory quality down to
zero is normally fine and helps speed, I found that it creates problems with
VMI simulation. Leaving it at the default of 3 seems to work fine.

https://simion.com/info/_downloads/fig-prg-flow.pdf
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Simulation Results

Here results from various simulations are summarised. Approximately 12 weeks
were spent just becoming conversant in Lua and discovering SIMION’s many
foibles, so lots of initial work was subsequently found to be either invalid or not
done in the best way possible. It is really only in the previous week or two before
writing this document that I feel like I understand what I’m doing and can get
SIMION to do what I want (and even then, not really). Hopefully eventually this
document will serve as a template for the next person who is tasked with doing a
big simulation like this...

Initial designs were based on the DC slicing spectrometer made by Townsend,
Minitti, and Suits. Running this geometry into the genetic algorithm and allow-
ing it to optimise things produces a geometry which is very similar to the initial
geometry - which confirms my hypothesis that many geometries can give good
performance, by just changing the applied voltages. So, for simplicity we stick
with the geometry defined in REF. REF is unique in that it actually gives dimen-
sions for the VMI spectrometer - which is not the case for many other papers!
Particularly, the two more ‘exotic’ designs by Wrede REF and Marchetti REF
give few dimensions in the literature - presumably as (in the Marchetti case) the
spectrometer is sold commercially by Velocitas.

Before we embark on a discussion of the simulations and results, now is prob-
ably a time to restate our initial requirements for the spectrometer.

� Physical Constraints

– Spectrometer must fit inside the planned interaction chamber (CF200
- 200 mm ID). As such the diameter of the plates cannot be larger
than around 180 mm to avoid arcing to the chamber.

– Spectrometer must achieve metrics (below) using a 40 mm effective
area MCP detector.
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� Experimental Capabilities

1. We will rephrase the 0.1 eV resolution requirement to actually be that
we need to be at around 3% dE/E - absurdly high end spectrometers
quote performance of ‘approaching 1%’, so this is probably fine.

2. Spectrometer must be able to clearly resolve mass peaks separated by
1 Da over a reasonable mass range - in practice this requires a m

∆m
resolution of at least 500, and probably substantially more.

3. Spectrometer must be capable of operating in a ‘slice-imaging’ mode,
where the Newton sphere is stretched along the ToF axis to facilitate
slice imaging.

4. Good velocity mapping must be maintained down to small image radii,
as imaging of large, slow-moving ions is expected ultimately.

Both of the physical constraints are easily satisfied, so will not be discussed further
beyond saying that a larger detector clearly increases the range of energies that
can be imaged using one set of voltages - but beyond this the benefit is not clear
to me. The other constraints (numbered 1 through 4) will be considered in turn
for each design.

3.1 DC Slicing Design

The initial design chosen was that described by Townsend et al for Direct Current
(DC) Slice Imaging. This design is an extension of the original Eppink and Parker
VMI designs to allow the extracted Newton sphere to be stretched along the ToF
axis, allowing a fast imaging camera to image multiple ‘slices’ of the Newton
sphere1. Slicing in this way is beneficial as it extracts more information and can1Which is indubitably

not a sphere after this pro-
cess, but hey.

reduce the need for inversion algorithms to extract the central slice. This design
doesn’t used pulsed electric fields to perform the slicing, hence direct current slice
imaging. This design is widely copied (or reproduced with superficial modifica-
tions, such as on the MB imaging rig) labs worldwide so seems a reasonable place
to start as slice imaging is desired. A schematic of the design (taken from the
original paper) is reproduced in Figure 3.1.

Having spent upwards of three months attempting to find improvements to
this design (documented vaguely in the previous chapter), it became clear that this
design gives as good performance as almost any other design when appropriate
voltages are chosen. With this in mind it is not surprising that almost every lab
doing this kind of science uses a variation on this sort of design2. One change we2And those that don’t

use designs that give im-
provements to problems
that we aren’t really af-
fected by.

will make is to make the plates slightly thicker (to 3 mm) for ease of machining,
and because thicker plates are better according to the theoretical electrostatic
optics. It doesn’t actually make any difference to the VMI performance, however.
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Figure 3.1: Schematic of the DC slicing spectrometer design. Reproduced from
REF

3.1.1 Our Design

Our design is essentially a copy of the design in Figure 3.1, but with a removable
flight tube so that the detector can either be placed directly on the interaction
chamber (± the length of an adapter flange), or can be placed an arbitrary distance
away using a cheap CF nipple extender. The flight tube in simulation was chosen
to be 500 mm long, but the length can be arbitrarily selected. This means that
a much wider range of ion energies can be focussed onto the 40 mm screen - an
enhancement over instruments with fixed ToF tubes (like the MB imaging rig),
even with a much smaller detector. The tube could even be extended to be much
longer if very high mass resolution was desired. The flight tube also provides
space for an additional optional zoom lens, if desired. Figure 3.2 and Figure 3.3
show the two options (no tube and flight tube).
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Figure 3.2: Our spectrometer design with no flight tube. The interaction region
(marked with a red circle) is aligned with the chamber windows. From left to
right, the electrodes are the repeller, extractor, third electrode, and a grounded
plate. The detector is on the far right.

Figure 3.3: The design with a flight tube and optional zoom lens fitted. The
geometry of the interaction region is identical to that in Figure 3.2. The zoom
lens operation is described in more detail in the following chapter.

3.2 Actual Results

Now we show some actual results. For each of the geometries (tube and no tube),
I tested the operation at both high and low energies over a wide range of particle
energies. I then simulated an ion image, inverted it using PyAbel3, and calculated3Using a Cartesian

Basex algorithm a radial distribution to find the energy resolution. I chose a range of ion energies
that would (roughly) fill the detector at both a high (9 kV) and low (2 kV) repeller
voltages. These voltages were chosen as 9 kV is about as high as a standard PSU
can go without arcing/needing specialist kit; and below 2 kV the ions probably
wouldn’t have enough kinetic energy to hit the detector hard enough to produce
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a detectable signal.

I will present results in subsections and comment more generally on things
after they have all been presented.

3.2.1 No Flight Tube

Simulation results without a flight tube are presented here. Figure 3.4 shows the
results taken at low extraction voltages. Figure 3.5 shows results taken at high
extraction voltages.
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Figure 3.4: Clockwise from top left: Simulated ion image; Inverted image; calcu-
lated energy resolution; radial distribution. Ion energies ranging from 1 eV to 8 eV
were used. Repeller/Extractor/Third Electrode voltages given in title (in volts).

Without the flight tube, the range of usable particle energies is probably around
3 eV to 40 eV. This is very wide, but without the flight tube the mass resolution
is relatively poor4 - isotopic resolution is probably difficult depending on the gate 4According to the very

imperfect simulationwidth. This is probably most useful for very high energy ions.
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Figure 3.5: Clockwise from top left: Simulated ion image; Inverted image; cal-
culated energy resolution; radial distribution. Ion energies ranging from 5 eV to
40 eV were used. Repeller/Extractor/Third Electrode voltages given in title (in
volts).

3.2.2 With Flight Tube

Simulation results with a flight tube are presented here. Figure 3.6 shows the
results taken at low extraction voltages. Figure 3.7 shows results taken at high
extraction voltages. The zoom lens was present but grounded for these simulations
- so effectively is not present.

With the flight tube, the range of usable particle energies is probably around
0.01 eV to 4.5 eV. This is not as wide as without the tube, but the resolution
at the low energy end of things is better (possibly useful if you’re using massive
electrosprayed ions). The mass resolution is much better with the flight tube (as
expected), and ions of mass 28 and 29 are easily resolvable in a simulated ToF
spectrum.

3.2.3 General Comments

I think the performance shown here is pretty decent and more than sufficient for
what we need. Most interesting perhaps is that the energy resolution decreases
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Figure 3.6: Clockwise from top left: Simulated ion image; Inverted image; cal-
culated energy resolution; radial distribution. Ion energies ranging from 0.1 eV to
0.8 eV were used. Repeller/Extractor/Third Electrode voltages given in title (in
volts).

dramatically when going towards the center of the detector - this is because there
are fewer camera pixels per image segment as the image radius decreases, so the
detected resolution is lower. The implication of this is that using a camera with a
higher resolution (here using 256×256 pixels to simulate PImMS2 or TimePix3)
will increase the attainable energy resolution. This is absolutely the case. For
a 256×256 image of some 1 eV ions with energy resolution of 4.4%, increasing
the sensor size to 512×512 maintaining the same VMI conditions gives 2.8%
resolution, and increasing to 1024×1024 gives around 1.3% resolution.

Otherwise this all seems reasonably within the ranges we want. The mass
resolution without the tube is a bit lacking (not quantified for reasons given earlier,
but just empirically tested), but is better with the tube. It could also be improved
by turning off the third electrode so that ‘crush’ imaging is effected - this will
obviously improve the mass resolution as the Newton spheres are more compressed.
Attempts at refining the geometry (and using other non-standard geometries using
more interesting electrode shapes) didn’t improve on this performance (under our
experimental constraints), so I think this is good as a place to start and build
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Figure 3.7: Clockwise from top left: Simulated ion image; Inverted image; cal-
culated energy resolution; radial distribution. Ion energies ranging from 0.5 eV
to 4 eV were used. Repeller/Extractor/Third Electrode voltages given in title (in
volts).

(and it’s tried and tested). The ion optic stack will be designed to be modular so
it can easily be modified if desired down the line.
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Zoom Lenses

4.1 Electrostatic Zoom Lenses

It is instructive to consider the highest and lowest energy particles that a spec-
trometer can image. The highest energy particles will be considered later, but
the lowest energy particles are more complex and will be considered here. A low
energy particle will hit the detector at low radii. While it is possible to choose
voltages such that the inherent VMI at this position is good, the ion signal is
detected by a camera, and there are fewer pixels per unit angle at low radii than
at high radii. This limits the measurable velocity resolution as was seen in the
previous chapter, so it can be desirable to ‘magnify’ the image such that the lower
energy particles actually hit a larger radius on the detector.

This can, in most cases, be achieved by simply lowering the repeller and
extractor voltages. However, if they are lowered to lower than ∼2 kV, then the ions
may not have sufficient energy to produce a signal when they strike the detector
- so in this case it is not possible to magnify the image purely by lowering these
voltages. This is where an external zoom lens is desirable, which can magnify
the image without lowering the repeller voltage and reducing detection efficiency.

The design process of making a zoom lens was guided by the familiar action of
a camera lens, and has been discussed widely in literature on electrostatic lenses
- mostly in the context of electron beam focussing (REFS). A ‘true’ zoom lens
(called a ‘parfocal lens’ in light optics) is one which can magnify an image whilst
keeping other parameters - object distance, image distance, and focus - constant.
The equivalent of this lens in VMI would be a lens which keeps the object distance,
image distance, and image energy constant while the magnification is varied. In
general, for a lens consisting of n fixed elements, then n − 2 parameters can be
kept constant by varying the properties of each element. Thus, a five-element
lens would (theoretically) be needed to produce this behaviour. Alternatively, if
the elements in the lens are movable (as is generally the case in light optics), then
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n − 1 parameters can be kept constant, so a four element lens would be needed
for the zooming action. There are numerous examples of electrostatic analogues
to these lenses in the literature (REFS) - including interesting examples with
pseudo-movable lenses that are controlled via computers.

Attempts were made to build up these movable zoom lenses in SIMION, and
they do function as intended (although not as nicely as indicated in previous work,
as VMI tends to break the paraxial approximation and aberrations can get severe).
However, the electronics needed to control such lenses would quickly get complex
- and as is shown below, similar action can be achieved using a different, simpler,
method.

4.1.1 Zoom Lenses in VMI

There are examples of zoom lenses being applied to VMI spectrometers, most
notably by Vrakking (REF) and in the excellent paper on transfer matrix analysis
by Harb (REF). The work by Harb inspired deeper thought about the analogy
between VMI and Fourier optics - and here is where we return to the idea of
creating a Fourier plane somewhere within the spectrometer, and then using an
additional lens to spatially map this Fourier plane onto the detector with a different
magnification. This idea is illustrated in Figure 4.1.

Figure 4.1: Schematic of the idea of magnifying a Fourier plane inside the spec-
trometer (F) onto a detector (PSD) further away. Taken from Harb et al.

These zoom lenses do not produce the ‘true zooming’ action where the magni-
fication can be simply varied whilst everything remains constant, but achieve the
same thing through slightly more steps - and this is perfectly acceptable for VMI
purposes. Initial testing of a simple design where an einzel lens is placed between
the interaction region and the detector show that magnifications of around a fac-
tor of 5 are possible, which is substantial. However, one (very minor) drawback of
the design posited by Harb and Vrakking is that they require the initial focussing
(as set by the extractor/repeller/possible third lens) to be set such that a Fourier
plane is established not at the detector, but within the spectrometer. Then the
magnification is performed that maps this Fourier plane onto a second Fourier
plane that coincides with the detector. This means that by turning off the lens,
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the VMI is not returned to how it was without the magnifying lens, and requires
that the voltages in the interaction region be adjusted to get good focussing back.

My approach which circumvents this problem1 draws on experience of using 1More of a very minor
inconvenience than an ac-
tual problem.

camera lenses. Generally speaking when a camera lens is zoomed, the image
does not remain in focus - and the focussing needs to be corrected following
the zoom. SIMION simulations suggest that a similar approach to designing VMI
zoom lenses can be fruitful. By leaving the repeller/extractor region set at voltages
which produce good VMI at the detector, a magnifying einzel lens can be turned
on - this will produce some magnification), but the new Fourier plane is generally
nowhere near the detector. By adjusting a ‘focussing’ electrode placed in the
interaction region by a small amount, it is possible to restore the final Fourier
plane to the detector plane. Then, if the magnification is no longer desired, the
magnifying lens and focussing lens can be turned off - and the initial VMI condition
is restored. I believe that this is a modest improvement on existing designs, largely
due to ease of use and the intuitive nature of the zooming-focussing behaviour.

No Magnification

Magnification

Figure 4.2: Example of how the magnifying zoom lens works. Top: Initial VMI
of low energy ions that hit the middle of the detector. Bottom: The magnifying
lens turned on, and the image filling a visibly larger area on the detector. Note
the change in equipotential lines in the source region, as the third electrode has
been adjusted to maintain VMI focussing under magnification.
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