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Statistical Mechanics: A Bridge Too Far?

Throughout physical chemistry so far, you’ve learnt about two main areas of
knowledge. Most physical chemistry education starts with a discussion of the
things that concern macroscopic quantities like enthalpy, entropy, and heat ca-
pacity - you learn about these in thermodynamics, for example1. Normally then 1One could (and I

do) make a case that
this is a bit backward,
and learning things from
a molecular level ‘up’
makes more sense than
learning about phenom-
ena but only explain-
ing them in future years
when you know the quan-
tum/statistical mechanics.

you proceed to learn about the microscopic - things that concern single molecules,
like wavefunctions, or single particle energy levels. An obvious question for the
inquisitive student is to ask ‘how do we link these together?’ . After all, it would
be a nice confirmation that all the quantum theory isn’t just nonsense if it could
predict measurable, macroscopic things that we can more easily see. In fact, if
quantum theory is any good, then it must be able to do this! The way that
you bridge together the microscopic and macroscopic worlds is using statistical
mechanics.

To illustrate how we do this, let’s imagine we want to find out how we can
calculate the internal energy of a load of atoms in a container, as a nice example
case.

What do we need to know?

So, we have a load of atoms. We need to know how many we have, and we can
do this2, and let’s call this number N . We also need to know the possible energy 2Count them, or weigh

them, or something.states that each atom could occupy, and we can do this using quantum mechanics
(the atoms are just particles in a box). Let’s call the ith energy state εi, and the
number of atoms in that state ni.

Knowing this seems like a good starting point, but what we crucially do not
know, is how the atoms are partitioned amongst the possible energy states?.
After all, our internal energy would be very different if every atom was in the
ground state, or every atom in an excited state. We need to know how the
available population is split up amongst the different states. How it is partitioned
amongst the states. At risk of labouring the point, we need to know how many
are in state 1, how many are in state 2, and so on. If we knew this, we could just
add up all the energies to find out our total internal energy!

The Most Probable Configuration

However, life gets a bit more complicated, because in general there are many
different possible combinations of states that are in our box of atoms. The atoms
keep moving around and this means that the number of atoms in each state
at any one time varies. We call these combinations of atoms configurations.
Helpfully, it turns out that provided we have enough atoms, then the behaviour of
the most probable configuration describes the behaviour of the whole system.
To understand this, imagine flipping a coin. You know that the chance of it
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being a head or a tails is 50:50, but if you only flipped 5 coins then there’s
a reasonable chance they’d all be heads, or all be tails. From this, you might
wrongly extrapolate that the most likely outcome of a coin flip is that it is heads,
but if you flipped enough coins, then over time the average result would get nearer
to the true result of 50:50. If we flipped a million coins, we would almost certainly
measure exactly this result.

We can extend this argument to atoms in different energy states quite easily.
If we have enough atoms (and we probably have on the order of 1023), then the
chance that enough of our atoms are in a state other than the most probable
state to make a difference to the overall configuration is vanishingly small - just
as we wouldn’t expect 750,000 of our 1,000,000 flipped coins to all come out
heads. The chance of our system being in anything other than the most probable
configuration is essentially zero, and furthermore, even if it wasn’t in the most
probable configuration, it would be in a configuration that is very very close to the
most probable configuration. So even if wasn’t in the most probable configuration
(and it almost definitely is), then it will behave essentially identically to it anyway.
The upshot is that we need to find out what the most probable configuration
is.

Finding The Most Probable Configuration

So how do we do this? Well, a helpful concept to have now is the statistical
weight of one of our configurations. This just expresses how likely it is that we
make a particular configuration if we randomise the states of our atoms. Equiva-
lently, this is expressing how many ways there are to make a certain configuration
- if there are more ways to make it, then the statistical weight is higher. The
statistical weight, W , is given by:

W =
N !∏
i

ni!
(1)

Where, as above, N is the number of particles, and ni is the number of particles
in the state i. The capital Πi denotes a product over all states i. The meaning of
the statistical weight can be simply shown if we define a model system consisting
of three particles, each with two possible energy states. All the particles could
be in the ground state, which we call configuration (1,1,1), or the first could be
in the excited state (2,1,1), and so on for configurations (1,2,1), (1,1,2), (1,2,2)
(2,1,2), (2,2,1), and (2,2,2). Let’s calculate the weight, W , for each of these
configurations. In all cases N = 3, and so N ! = 6, so we just need to calculate
n1! and n2! - as we have two possible energy states. Calculate the weights now!

You should find that W (1, 1, 1) = W (2, 2, 2) = 1, W (one in state 2) = 3, and
W (two in state 2) = 3. This ought to make sense, as there are three ways that
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each configuration where we have one particle in a different state from the other
two can be reached, but only one way we can reach the configurations where all
particles are in the same state. This is what we mean by the statistical weight
of a configuration.

So, to find the most probable configuration, we want to find the configuration
that has the largest weight. Or, we want to maximise the weight. As the
weight is just a function, we can use calculus to find the maximum weight, but
we need to impose some constraints on this maximisation, as otherwise we would
end up finding out that the most likely configuration is when we have an infinite
number of particles! The constraints we need to add are:

1. The total number of particles remains constant.
∑
ni = N . So we can’t

create or destroy particles to increase our weight.

2. The total energy of the system is constant.
∑
niεi = E, where E is the

total energy of the system. This means we can’t just create or destroy
energy to increase our weight.

We will also find it convenient to maximise not the weight directly, but actually
lnW . This is fine, as a maximum in lnW is also a maximum in W 3. Doing this 3This is because lnx

is a monotonic function,
I think.

means we can use Stirling’s approximation4 to make dealing with the factorials a

4N ! ≈ N lnN −N
bit easier. We can then use Lagrange’s method of undetermined multipliers
to maximise lnW subject to the above constraints. This is outlined below, note
that we are maximising W with respect to ni, i.e. we are trying to find the set of
state populations ni which give us the configuration with the largest weight.

First, an expression for the natural logarithm of the weight:

lnW = lnN !−
∑
i

lnni (2)

Where we have used some of the rules of logarithms - this part is left as an exercise
for you! We now differentiate this with respect to ni. Let’s use partial derivatives
because I’m not really sure whether to be partial or not, and a mathematician
friend of mine once said ‘if in doubt: partial’.

∂ lnW

∂ni
=
∂lnN !

∂ni
−
∑
i

∂ lnni!

∂ni
(3)

The first term in the above equation is clearly zero, as the total number of particles
N won’t change if we change how the particles are split up amongst the different
states - which is what changing ni is doing. The second term isn’t obviously zero,
so let’s apply Stirling’s approximation to the second term and get rid of the nasty
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factorial.

∂ lnW

∂ni
= −

∑
i

∂(ni lnni − ni)
∂ni

= −
∑
i

(
∂ni lnni
∂ni

− ∂ni
∂ni

)
= −

∑
i

(
ni
∂ lnni
∂ni

+ lnni
∂ni
∂ni
− 1

)
= −

∑
i

(
ni

1

ni
+ lnni − 1

)
= −

∑
i

lnni = 0

Check you agree with the derivation. The last line is set to zero as we want a
maximum (we can also therefore get rid of the annoying minus sign). However,
now is time to apply Lagrange multipliers for our initial constraints. So let’s
define two Lagrange multipliers α and β. Look in some maths notes for more
details of this (it’s a bit fiddly), but when you do it you’ll end up with the following:

α+ βεi + lnni = 0 (4)

Which then rearranges to:
ni = e−αe−βεi (5)

For our population of state i. This is great, but we can also go a bit further use
one of our initial conditions to get rid of the multiplier α. Using our constraint
(1) from above, we can say that:

N =
∑
i

ni = e−α
∑
i

e−βεi (6)

And therefore that:

e−α =
N∑
i e−βεi

(7)

And therefore that:

ni =
N∑
i e−βεi

e−βεi =
N

q
e−βεi (8)

Where the partition function, q, is defined as:

q =
∑
i

e−βεi (9)

I’ll let that sink in for a bit.

We should also now say that β = 1/kT where k is the Boltzmann constant and
T is the temperature. You can show this algebraically too - but it’s easiest if you
derive the whole equation slightly differently starting from a more ‘microscopic’
position. This derivation is done in McQuarrie’s textbook.
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The Partition Function, q

What we just did was pretty awesome, if we’re honest. We just derived a for-
mula for the populations ni of our different energy states εi that will produce the
configuration with the largest weight. We already know that this configuration is
the one that dominates the behaviour of the system, from our arguments about
tossing coins. Strictly this is due to a thing called the principle of equal a priori
probabilities5, which is basically just saying that we assume that each configura- 5If you enjoy trying to

sound clever.tion is equally likely to occur, and so the one that has the most possible ways
of being made (the one with the highest weight), is the one that dominates the
behaviour.

So, now we’ve basically solved our puzzle, right? Our challenge was to find
expressions for ni, i.e. how the available population N is partitioned among the
different states i, and we just did this in Equation 8. To do this, we defined a
new thing, q, which is called the partition function. It tells us how the available
population is partitioned between the different states. I could rewrite Equation 8
as:

Pi =
ni
N

=
e−βεi

q
(10)

Where Pi is the probability that we find ourselves in state i - the ratio of the
population of state i to the total population N . So the probability of being found
in state i is just the Boltzmann factor e−βεi divided by the partition function q. So
if the partition function is big, then the probability of being found in one specific
state is rather small, as we are partitioning our population over a lot of states.
Let’s look at q in more detail:

q = e−βε0 + e−βε1 + e−βε2 + ... (11)

If you’re a North Sea crossing intrepid explorer like me, you might have at one point
learnt about this in a language like Danish or German. In those languages, q isn’t
called the partition function, instead it’s called (in Danish) the tilstandsummen.
This translates roughly to ‘sum-over-states’, which is a nice way to visualise what
it physically represents. Looking at the equation above, it is clearly a sum of
the Boltzmann factors for all our different states. We order the states such that
ε0 < ε1 < ε2 and so on, so each term in the sum gets gradually smaller as the
energy of the states increases (at a constant temperature).

Interpreting q

The partition function is just a number at the end of the day, but what does it
actually mean? If I said that the partition of a system was 5, or 1, or 10 million,
what does that mean?
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To understand this, let’s rewrite our expression for q in terms of energy dif-
ferences by dividing by the first term in the equation above.

q = 1 + e−β∆E10 + e−β∆E20 + ... (12)

Where ∆E10 = ε1 − ε0 and so on. Let’s think about some physical cases now.
What if the temperature is really really low, such that β →∞? In this case, every
term except the first goes to zero, and q = 1. We know that at low temperature,
everything will be in one state (the ground state), and this is exactly what the
partition function tells us, because we are only ‘partitioning’ our population over
one state. We could arrive at the same conclusion if we said that the energy gaps
to the ground state were huge too - do you agree?

What if we were at a really high temperature, so that β → 0? In this case,
every term in this sum goes to 1, and we end up that q is equal to the number
of available states we have. We know that at really high temperatures, all states
end up equally populated. Does this make sense here too?

Hopefully now you’re seeing the interpretation of q. q tells you at a given
temperature, how many states are thermally accessible and therefore will
have population. If our q was 5, then we have 5 states that will have non-
negligible population. Note that q doesn’t need to be an integer, but it cannot
be less than 1, as this implies we have less than one state populated! If you find
that q < 1, this normally means that one of your assumptions in the calculation
wasn’t valid.

Back to the Point

Ok, so we understand how to find the populations of our states, and we understand
what q is and how it helps us to do this. But our original question was to find out
how we can calculate the internal energy of a load of atoms in a box, so let’s carry
on with this. We now know everything we need to know: how many atoms we
have; how many states are available to them, and how the population is distributed
among those states. So how do we calculate thermodynamic properties?

We can do this with the help of things called bridging functions6. These are6You can also derive
these directly, but we’re
just going to quote the re-
sults here for brevity.

things that link together thermodynamic functions with the partition functions,
for example:

U = NkT 2

(
∂ ln q

∂T

)
(13)

For the internal energy. This is fairly straightforward to derive if we note that
U =

∑
i niεi. We can also say that:

A = −Nk ln q (14)
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For the Helmholtz free energy. This specific function is often called the Massieu
Bridge for some reason. We can find expressions for entropy, Gibbs’ free energy,
pressure, etc.. too. The main idea is that we have some functions that give us
a bridge between the partition functions and the thermodynamic properties. To
finish off, let’s see how we can use the formula for U to calculate the internal
energy of our gas.

We need to find the partition function for our atoms, but we know this! All
we need is an expression for the possible states εi. A load of atoms in a box
only have translational energy, so we can consider them just as particles in a box,
where:

εi =
i2h2

8mL2
(15)

Where i is our quantum number now, but other symbols have their usual meanings.
L is the length of one side of the box (as this is an expression for energy in a 1D
box). So our partition function is given by:

q =
∑
i

exp

(
i2h2

kT8mL2

)
(16)

Where we expanded the β into the fraction. The trick now is to say that because
we’re probably at room temperature (and we are, I just forgot to write that at the
start, and it’s up to us to define the problem anyway), then the levels are closely
spaced enough that we can change this from a sum over i to an integral over i.
Do this integral (remembering some standard integrals!), and you’ll find:

q =

√
2πmkTL2

h2
(17)

But this is actually only the equation for one dimension of the motion, as we used
the expression for energy of a particle in a 1D box. So we can just cube this to
find the partition function for 3D motion as the degrees of freedom are separate.

Having cubed the expression, take it and bang it into the expression we had
for U above. This isn’t as bad as it looks, because as we’re taking the derivative
of ln q we can just ignore everything that isn’t temperature dependent in our
expression for q (try it and see). What you should find is that:

U = NkT 2 × 3

2T
=

3

2
RT (18)

Isn’t that satisfying?

Epilogue: Complications

A couple of things I haven’t mentioned here are probably worth flagging up.
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Firstly, I’ve kept talking about the distribution of energy states not energy
levels. This is deliberate. The difference between a state and a level is that a
level can contain many states, depending on the degeneracy of the level. If we
wanted to change the formulae used to refer to energy levels, then we also have
to include a factor to account for the degeneracy of each level (normally called
g). This doesn’t add any complexity, but it’s worth being aware of. For example,
for a sum over states:

q =
∑

states,i

e−βεi (19)

Where gi is the degeneracy of state i. Whereas for a sum over levels:

q =
∑

levels,i

gie
−βεi (20)

Secondly, is the difference between q and Q, which you may have already
seen. q is the molecular partition function, which describes the behaviour of
each particle in the system separately. Q is the canonical partition function,
which describes the behaviour of the entire system together as an ensemble. If
the particles are indistinguishable, which is when you could take a particle out and
put it somewhere else without really noticing7, then:7There’s better defini-

tions than this.

Q =
qN

N !
(21)

But if the particles are distinguishable, then:

Q = qN (22)

In the gas or solution phases, then particles are indistinguishable. The classic
case of distinguishable particles is if they are in a solid lattice (like a crystal, for
example). The difference arises because if the particles are indistinguishable then
we have to avoid ‘over counting’ states that are the same, but just arises from
permuting two particles.


