Nuclear Spin Statistics
The following discussion is largely taken from Atkins’ MQM, 1st Edition, p.335.

Any heteronuclear diatomic will show a pure rotational spectrum (as there is a dipole moment, albeit
possibly weak, for any heteronuclear diatomic), with all expected lines present in the spectrum. However,
for the rotational spectra of homonuclear diatomics!, there is a complication due to the nuclear spin
statistics.

Rotating a diatomic molecule is an operation which interchanges the nuclei, and therefore affects the
total wavefunction. If the atoms are the same, then this must affect the total wavefunction in accordance
with the Pauli principle?. With this in mind, consider the expression for the total wavefunction:

Vot = ¢el¢vib¢rot¢nuc (1)

This should hopefully be familiar to you - decomposing the total wavefunction into a product of a wave-
function for the electrons, nuclear vibrations, nuclear rotations, and nuclear spins respectively. Rotation
is essentially relabelling, or permuting, the two nuclei. Permuting the two nuclei, which we will represent
with an operator Prue, will have the following effects on the various parts of the total wavefunction (we
decompose it in this way to analyse the effect it has on various parts of the decomposed wavefunction).

e We rotate the spatial coordinates of the molecule by 180 degrees - the operation Cb.

e We then invert the coordinates of the electrons (%el), and then reflect them in a plane orthogonal to
the rotation axis (G¢;).

e We finally swap, or permute, the nuclear spins - p,,.

So we can write:

pnuc - ﬁna—elgelC’Q (2)
Operating with this bad boy on the total wavefunction does the following:
Pnuc\ptot - &el%elwel X zﬂvib X CQwv'ot X ﬁn¢nuc (3)

The vibrational part is unaffected because this only depends on the magnitude of the separation of the
nuclei. The overall effect of pnuc must be to produce ¥, (if the particles are bosons), or to produce —W;,;
(if they are fermions). So consider now how the sign of each part of the wavefunction changes under it's
relevant symmetry operation:

e .o changes by (—1)7 under a Cs rotation.3
o If i) is of u or g symmetry then the wavefunction sign changes by 1 or -1 under i,;.

e For a ¥ state, we also consider X% - + states and — change by 1 or -1 under &,;. If it's not in a
> state, both + and — occur, so the wavefunction changes by 1 x —1 = —1 if there is one of each
state.

These are, by definiton, Raman transitions - as a rotational electric dipole transition is not allowed for a non-polar
molecule, which all homonuclear diatomics are by definiton.

2Remember that the Pauli Principle is just a small part of the wider Spin-Statistics Theorem, which states that the
wavefunction of of a system of identical integer-spin particles must have the same value when the positions of any two
particles are swapped, and must change sign if the particles have half-integer spin. The point here is that it only matters if
the particles are identical - if the diatomic was heteronuclear then this argument doesn’t apply/isn’t necessary. Still another
way of looking at it is to say that the Pauli principle ensures that two fermions cannot have the same set of quantum numbers
- if the particles are different then they don't have the same set of quantum numbers by definition.

3This is only true for a singlet spin state - otherwise we have to couple J to the total spin S, to give G = J + S and
therefore (—1)©. This is the case for molecular oxygen, but doesn't actually turn out to affect things very much so the
examples we did where we ignored this are still correct - try it and see. You're welcome!



To illustrate how we can use this, consider a 12; state. We operate with our Pnuc operator and see what
effect it has:

Pnucllltot = 5’61%(’@061(12;)) X wvib X CA121/}7"ot X ﬁn¢nuc (4)
Pnuc\lltot - (+1)(+1)(wel(12;)) X ¢m’b X (_1)J¢rot X ﬁnwnuc (5)
Pnuc‘lltot = (—1)‘]%[ X wvib X wrot X ﬁnwnuc (6)

Which leads to the following expressions for the total wavefunction, depending on whether the nuclear spin
wavefunction is symmetric or antisymmetric.

PrueVior = (—1)J\Ptot If the nuclear part is symmetric. (7)

PrweVior = (—1)J+1\Ilt0t If the nuclear part is antisymmetric - an extra factor of (-1). (8)

So, if we assume the particles are fermions, then the overall wavefunction has to be antisymmetric. Which
means that any symmetric spin states will produce lines with odd values of J, and vice versa. If the
particles are bosons, then the opposite is true - symmetric spin states produce even values of J.

So, the obvious question is then - how do | know if there are symmetric or asymmetric spin states?
For this, we have to consider the nuclear spin angular momentum I, and it's projection onto a space-
fixed axis my. Any value of I will have 21 + 1 values of m; associated with it, as we are familiar with,
so if there are two nuclei, there are (21 + 1)? possible spin states (where each state is labelled with
by both mjy(;y and my) for nuclei 1 and 2 respectively). Out of the (21 + 1)? total possible states,
there are 21 + 1 states where my) = my(y), as follows logically from the two nuclei having the same
nuclear spin (homonuclear diatomic), and these states are clearly symmetric under exchange. Of the other
(21 +1)% — (21 + 1) = 2I(2I + 1) states, half of them are symmetric and half are antisymmetric (as we
can take antisymmetric or symmetric linear combinations of the two initial projections). Therefore:

Neym =21 +1+1(21 +1) =2* + 31 +1 = 21 + 1)(I + 1) (9)
Nasym = ](2] + 1) (10)
Therefore the ratio of symmetric to antisymmetric spin states is:

Noym _ QI+1)I+1) I+1 (11)
Nasym I(2I+1) I

Which is a familiar formula from the lecture notes. Then it is possible to work out the number of possible
symmetric and antisymmetric spin states, and therefore if there missing lines a spectrum, or what the ratio
of the odd/even lines will be.

You can also do this for non-diatomic molecules, to quote Atkins: “The principles are the same but it
is substantially more difficult” - so | think we can safely leave it here for now...



