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Population vs Sample Statistics
James Pickering, School of Chemistry, University of Leicester

To further elaborate on the ‘what’s the difference between population and sample
statistics’ question, it’s helpful to consider what we are trying to achieve with
statistics, and this is best illustrated with an example. Imagine we have 1000
people running a marathon1, and we look at the statistics of their finishing times: 1This example shame-

lessly stolen from Michael
Burt, University of Oxford.

I simulated this by generating 1000 times to be normally distributed with a mean
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of 4 hours, and a standard deviation of 0.2 hours (12 mins). As we can see, their
finishing times are (roughly) normally distributed around a mean time of 4 hours
(the blue bars show a histogram of the finishing times, and the orange line shows
the ‘ideal’ normal distribution). If I wanted to know the mean finishing time of all
runners (and it’s standard deviation), then I can calculate it using the formulae
we know (treating the data we have as an entire population):

Population Mean : µ =
1

n

∑
i

xi (1)

Population Standard Deviation : σ =

√
1

n

∑
i

(xi − µ)2 (2)

If I do this calculation, then I’ll find that for all 1000 runners, the mean µ = 4.009
hours, and the standard deviation σ = 0.199 hours2. This matches pretty well 2The data is attached

in a file if you don’t believe
me and want to calculate
yourself.

with what we know is true from the simulation parameters I used (mean of 4
hours, standard deviation of 0.2 hours).



2

But, what if in our marathon, we only have limited timing equipment, and so
we can only actually measure the finishing time of ten runners? Can we use the
data from these ten runners to try and estimate the mean and standard deviation
of the finishing times of all 1000 runners? Yes we can, and this is where we use
the formulae for sample mean and standard deviation:

Sample Mean : x̄ =
1

n

∑
i

xi (3)

Sample Standard Deviation : s =

√
1

n− 1

∑
i

(xi − x̄)2 (4)

This is the key idea of sample statistics, and the key take-home:

The point of sample statistics is that we are trying to get the best
estimate of the population statistics from limited data (a sample
of the population).

Let’s randomly pick ten times from our list of 1000:

4.0359, 4.2089, 3.9416, 4.0910, 3.7579, 3.6973, 4.3213, 4.1614, 3.9589, 4.0044

We can now calculate the sample mean and standard deviation using equations
(3) and (4) above, and we find that the sample mean, x̄ = 4.018 hours, and the
sample standard deviation, s = 0.193 hours. So, picking just ten runners didn’t
do a bad job in estimating our population statistics!

But, what if we had instead used the formulae for population mean and stan-
dard deviation? Clearly the mean would be the same, but if we used equation (2)
rather than equation (4) for our standard deviation (having the denominator as
n not n− 1)? In this case, we would find that our standard deviation was 0.183
hours, quite a bit lower than the true standard deviation. This is generally the
case, and we can say that:

Using n rather than n−1 in the formula for sample standard deviation,
will always result in you underestimating the population standard
deviation.

Remember, our goal is to use x̄ and s to estimate µ and σ. In an ideal world
where we have infinitely many data points and an infinitely large sample, µ = x̄
and σ = s.

An important subtlety here is that we are free to define for ourselves what
the ‘population’ is. We might take our data from 1000 runners and treat it as a
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population (like we did here). Alternatively, we might treat that as a sample of
1000 runners out of all the people running marathons globally (probably several
million runners). In this case, we could estimate the mean and standard deviation
of the global population using the sample formulae, taking our 1000 runners as
a small sample. Note however, that as n gets big, n − 1 ≈ n, so the difference
matters less and less. The bottom line is that it’s important to think about what
you’re doing, and whether or not you are looking at a whole population, or just a
sample of a larger population. My rule of thumb is: if in doubt, use the sample
formulae, but no doubt some statisticians would disagree with me3. 3In researching a bit, I

have found several places
advocating for either sam-
ple or population as the
default choice - so I’m not
sure there’s a universal an-
swer!

On a more advanced note, we can unpick the difference between equations
(2) and (4) a bit further:

Sample Standard Deviation : s =

√
1

n− 1

∑
i

(xi − x̄)2

Population Standard Deviation : σ =

√
1

n

∑
i

(xi − µ)2

The difference is that factor of n−1 in the denominator, as we know. This factor
is known as Bessel’s Correction and essentially aims to correct for the issue we
just saw in the running example - if we don’t use it, we end up underestimating
the population standard deviation. But, why is the factor n− 1 and not anything
else? The reason for this is quite subtle but there are two things that may make
it a bit clearer:

1. (More simple): Imagine taking a sample of 1 data point. Clearly, we can’t
define the standard deviation of one data point, and the factor of n − 1
reflects this (as then our denominator would be 1−1 = 0, and our standard
deviation undefined - division by zero).

2. (More tricky): If we have n points in our sample data, then we have to use
these n points to calculate our sample mean, x̄. This means that all of our
points are going to be biased and be nearer x̄ than µ (µ being the ‘true’
mean of the population that we want to estimate). This bias means that
the (xi− x̄)2 part of the formula (the sum of residuals) for s is going to be
smaller than the (xi−µ)2 part of the formula for σ. Bessel’s correction helps
to remove this bias, by dividing the sum of residuals residual by a smaller
number, compensating for the fact that it is probably an underestimate due
to the definition of x̄.

This is more than enough and just being aware of all these things is important.
Statistics quickly becomes very complex once you dig deeper, but being aware of
the possible problems and subtleties is as much as we generally need as chemists!


