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Introduction

If you’re reading this, you’re probably a student who is learning calculus for
the first time as part of a science degree, but that didn’t do much maths
before this, and are pretty unsure and unconvinced about this whole thing1.
It seems like a lot of maths and you’re not sure you signed up for that.
After all – the adverts for chemistry were all about saving the world with
new drugs and energy technology, not tedious algebra. Maybe you’ve even
felt that the amount of maths means that this choice of subject wasn’t for
you. Hopefully we can change that view – there’s no reason why anyone
can’t learn this stuff.

It’s true that maths plays a central role in science, and especially in chem-
istry, so we do need to learn it. However, it’s also true that in schools
maths is almost universally taught in a terrible way that makes it seem
way more boring and hard than it actually is. They normally focus on the
machinery behind the maths (like, how to solve quadratic equations), but
don’t say much about why you would actually want to do that (because
lots of equations that describe the world around us are quadratic).

In my opinion, once you understand the substance behind the equations
and the machinery, it all gets easier. Blindly learning how to manipulate
algebra isn’t useful for anyone. There are times when we will focus on the
machinery, especially at first, but we will always try to make it clear why
this stuff is useful. Understanding that is what will make you an excellent
scientist. It’s more important to be able to translate between the physical
world around us and the mathematical world on paper than it is to be able
to do fiddly algebra.

In this workbook, we are going to learn the machinery behind calculus,
and why it is useful. We’re not going to just learn a load of rules (though
there will be a bit of this), we’re going to keep coming to back to real
examples where this is useful to show you how it’s a beautiful and elegant
way to understand the world around us.

The workbook is structured as a series of steps in each chapter. Each step
asks a question that you should answer before the next step. The answer
will be given at the top of the next step, so scroll through it step by step
and work at your own pace.

1Or you’re an undergraduate at the University of Leicester who I am using to test
this idea for a book. Though that doesn’t mean you’re not also unconvinced.



Chapter 1

Intuition

To start with, we’re going to think about something called a derivative.
Before we do the algebra-crunching, it’s helpful to have an intuition of
what a derivative physically means and why we should give a shit about
calculating it - so let’s do that.

1.1 The derivative of y with respect to x is written as:
dy
dx

We’ll discuss what this means shortly, but firstly - what would the derivative
of f with respect to t be written as?

1.2
df
dt

Easy, right? It doesn’t matter what letters we use for our variables. But
we’ll stick with y and x for a bit.

Anyway, the derivative dy
dx tells us about how the variable y changes as we

vary x . The dx represents a small change in x .

What does dy represent?

1.3 A small change in y . The small d here means ‘an infinitesimally small
change in’, if we are being strict. We will just think of it as meaning a
small change.

3
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The overall derivative is basically the ratio of these, i.e:
dy
dx =

Small change in y

Small change in x

If dy
dx = 1, what does that imply about dx and dy? Try to multiply both

sides of that equation by dx and see what happens.

1.4 We find that dy = dx . So it implies that a change in x , dx , produces
an equal change in y , dy .

If the derivative, dy
dx , is a big positive number (say, 100), what does that

imply about the change in y dy produced by a given change in x , dx?

1.5 It implies that there’s a big change in y when we change x , i.e:
dy
dx = 100 → dy = 100dx

So the change in y is 100 times bigger than the change in x . So if I
increased x by 2, y would increase by 200.

If the derivative is a small number, (say, 0.01), what does that imply about
the change in y dy produced by a given change in x , dx?

1.6 It implies that there’ll be a small change in y when we change x , i.e:
dy
dx = 0:01 → dy = 0:01dx

So the change in y is 0.01 times bigger than (or, 100 times smaller than)
the change in x . So if I increased x by 2, y would only increase by 0.02.
Note that y still increases though.

What about if the derivative is zero? What does that imply about the
change in y for a given change in x?

1.7 It implies that dy = 0 for a given change in x . So, y doesn’t change
as we change x . Another way of saying this is that y is independent of x .

What about if the derivative, dy
dx , is a negative number, like -5?

1.8 This implies that y gets smaller as x increases. You can see this as:
dy
dx = −5 → dy = −5dx
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So the change in y is -5 times the change in x . So if I increased x by 2,
y would only ‘increase’ by -10, or in other words, y would decrease by 10.
You can also see this generally by the argument:

dy
dx < 0 → dy < 0 if dx is positive

So our change in y must be less than zero, so y get smaller as x gets
bigger.

Enough abstract maths. Imagine we have a chemical reaction where some
reactant, R, is consumed, and product, P, is produced. Something like:

R −−→ P

If we measure the concentration of P, [P], as the time, t, passes, would
the derivative

d[P]
dt

Be positive or negative? Think about what must happen to the concen-
tration of P over time.

1.9 It would be positive, because P is produced as time, t progresses. So
both [P] and t get bigger together.

What if we looked at the amount of reactant, R? Does the reactant
concentration [R] increase or decrease as time progresses?

1.10 It decreases, because reactant is used up.

So, as time passes, what is the sign of the derivative:

d[R]
dt

Is it positive ([R] increases as t increases), or negative ([R] decreases as t
increases)?

1.11 It’s negative, because reactant gets used up, so the concentration
of reactant, [R], decreases as t gets bigger. These derivatives are ways we
measure rates of chemical reaction, but more about that later.
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This idea is used in many other areas than chemistry. If we are measuring
the distance travelled by an object, s, as time t passes, we can think about
the derivative:

ds
dt

If the object moves a very large distance in a short time, is this derivative
big or small?

1.12 It would be big, because ds is big (large distance) and dt is small
(short time).

Is that object moving quickly, or slowly?

1.13 Quickly, right? because it’s moving a large distance in a short time.

So, is the speed of the object high, or low?

1.14 High, of course.

Actually, we define the speed of the object as the derivative of the distance,
s, with respect to time, t:

ds
dt

If the object moves slowly (so only covers a small distance in a certain
time), is this derivative big or small?

1.15 Small – because ds would be small for a given change in time dt.

Hopefully you’re starting to see that:

a These derivatives tell us about real physical stuff that might be useful.

b It would be handy to have a way to calculate these derivatives, as often
we are interested in thinking about how things change in response to
other things.

But if you’re unconvinced, these aren’t even only useful in science. What
if we were running a business and wanted to look at the prices of things
over time? We could imagine wanting to know about the change of price
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with respect to time, or:
d Price

dt
If prices increase over time, is this derivative positive or negative?

1.16 Positive, because if prices increase, then d Price is positive, and as
time passes then dt is positive – so the derivative:

d Price
dt

is also positive.

This derivative is actually one way of measuring inflation, which is a met-
ric that captures how prices change over time. This derivative stuff is
everywhere.

1.17 Maybe you’re not interested in chemistry, physics, or business (but
hopefully you’re at least interested in the first one of these). So, here’s
another example.

Imagine we are doctors monitoring the spread of disease in a society over
time. We might be interested in the number of people, N, are infected as
time, t, changes.

What derivative could be define to help us think about this change?

1.18
dN
dt

The derivative dN
dt would tell us how the number of infected people changes

over time. Later on we will talk about differential equations and see how we
could start from that derivative and then work out the expected number of
infected people in the future. Hopefully you can see that would be useful!

As a final example, let’s go back to chemistry. Sometimes we’ll think about
something called the heat capacity of an object or material – you probably
remember it from A level.

If an object requires a lot of heat (Q) to be added to raise the temperature
(T ), then it has a high heat capacity. What heat capacity does it have if
only a small amount of heat is needed to raise the temperature?
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1.19 A low heat capacity – i.e. it can’t ‘absorb’ much heat before the
temperature starts to rise. It doesn’t have much ‘capacity’ to store that
heat before getting hotter.

That description above was in words, but words are long. What if we
defined a derivative:

dQ
dT

If we add a fixed amount of heat, Q, to an object and then measure a large
increase in temperature, T , is this derivative positive or negative, and large
or small?

1.20 Positive and small. If there’s a large increase in temperature (dT is
big) for a given amount of heat added dQ, then dQ

dT is going to be small
(large denominator in the fraction). But it will be still be positive, the
temperature doesn’t go down as we add the heat.

What if we add a fixed amount of heat to an object and measure a small
increase in temperature? Is the derivative dQ

dT large or small?

1.21 Large – because now dT is small for a given dQ. Dividing by a
smaller number in the derivative gives a larger number.

You may have noticed that this is similar to our definition of the heat
capacity. In fact, the definition of the heat capacity, C, is:

C =
dQ
dT

If an object has a high heat capacity, is the derivative above large or small?

1.22 Large.

If the heat capacity is high, and we add a certain amount of heat dQ, is
the change in temperature dT large or small?

1.23 Small. We can see this mathematically, if we don’t like words:

C =
dQ
dT → CdT = dQ → dT =

dQ
C
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So if the amount of heat added dQ is fixed, and the heat capacity C is high,
then dQ

C
is small and so dT is small. Strictly, multiplying and dividing by

derivatives like this isn’t really allowed, but it’s useful and we’re not anally
retentive mathematicians.

Hopefully you are seeing that these derivatives are useful things that tell
us about how things change. In this course we are going to learn how to
calculate them, and, as we go along, learn how we can use them in our
science.

To finish, if the derivative dy
dx is large, what does that mean about the

relationship between x and y again?

1.24 It means that a given change in x , dx produces a big change in y ,
dy .

1.25 Summary:

• The derivative of y with respect to x is written as dy
dx .

• If the derivative is big, it means that there’s a large change in y for
a given change in x and vice versa.

• Physically, derivatives represent the change in one quantity as an-
other quantity is varied. They can be used to represent reaction
rates, motion of objects, inflation, and many other useful concepts.

Next time we will start learning how to calculate derivatives.



Chapter 2

Basics

Now let’s learn how to calculate some derivatives of basic functions. At first
we are just going to learn the rules so we can get to using our derivatives
for things, but later on we will talk about where these rules come from.
Think of it as learning how to drive the car first, then worrying about how
it all works.

The process of calculating derivatives of functions is called differentiation.
So we differentiate functions to find their derivatives.

Remember that when we differentiate one variable with respect to another,
what you are doing is finding out the rate of change of the first variable
with respect to the other. Always remember that the maths we are doing
has a physical meaning – it is not maths for the sake of maths!

2.26 Let’s start with simple functions like:

y = x2

Functions like this, that just contain powers of the independent variable
(here x), are called polynomials.

The derivative of the function above is:
dy
dx = 2x

The steps for calculating this are:

10
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1. Look at the power (in this case we had x2 so the power is 2). Multiply
the function by the power (so we get 2x2)

2. Then, reduce the power by 1, so we end up with 2x2−1 = 2x1 = 2x .

What would the derivative of y = x3 be?

2.27
dy
dx = 3x2

Remember we multiply our function by the power (3), and then reduce the
power by one (from 3 to 2).

What if I wanted to find out the derivative of the function:

f = t2

with respect to t? What would the derivative df
dt be?

2.28
df
dt = 2t

Can you see that this was just the same as the example in the first box, but
using different letters? It doesn’t matter what letters we use to represent
the variables – the rules are the same.

What would the derivative of y = 2x2 with respect to x be? Remember
the same rule applies.

2.29
dy
dx = 4x

We get there by multiplying by the power (to give 2x2 × 2 = 4x2), and
then reducing the power by one (to give 4x).

What about the derivative of y = 3x−1? Remember it’s the same rule,
even with a negative power.

2.30
dy
dx = −3x−2

Same rules:



12 CHAPTER 2. BASICS

1. Multiply by the power: 3x−1 ×−1 = −3x−1

2. Reduce the power by one: −3x−1−1 = −3x−2

We just need to remember that rule and we can differentiate any polyno-
mial.

What would the derivative of y = 8x be?

2.31
dy
dx = 8

To see why this works, we just follow the rules again:

1. Multiply by the power (which is one, x1 = x): 8x × 1 = 8x

2. Reduce the power by one: 8x1−1 = 8x0 = 8× 1 = 8

Because anything to the power of zero is one.

How about the derivative of y = 4? Remember that because x0 = 1 you
can think of this as y = 4x0 and then just apply the normal rule.

2.32
dy
dx = 0

Because in the first step we multiply by the power, which is zero, so:
4x0 × 0 = 0. In fact, the derivative of any constant term (anything that
doesn’t depend on the variable being differentiated by), will always be zero.

Before we continue, evaluate derivatives of the following functions with
respect to x :

y = 4x5 y = 8ı y = −6x−0:5

2.33
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dy
dx = 20x4 dy

dx = 0 dy
dx = 3x−1:5

If you didn’t get all of those, then have a look back at the previous frames
before continuing.

We’ve done a lot of abstract ‘machinery’ learning so far, so let’s apply it
to something tangible – an example from sport. You might be aware of
a phenomenon where a ball that is kicked or thrown over a distance (L)
actually moves sideways as it travels. It’s called ‘swing’ in cricket, and
‘curl’ or ‘bend’ in football. The amount that the ball swings or bends, S,
is related to L by:

S = AL2

Where A is a bundle of constants that relate to things like ball size and air
density. What is the derivative of S with respect to L?

2.34
dS
dL = 2AL

Just by applying our normal rule: AL2 → 2AL2−1 → 2AL.

So, if the ball travels for a longer distance (larger L), will there more or
less swing, S?

2.35 It will swing more, because dS
dL is proportional to L, so if L gets

larger, the derivative gets larger, and we get a bigger change in swing dS
for a given travel distance dL.

Anyway – that’s all fun, but let’s keep working to expand the number
of types of functions we can differentiate. If we have to differentiate a
polynomial containing a few terms like this:

y = x2 + 2x + 1

Then it’s as easy as just differentiating each term one-by-one, so:

dy
dx = 2x + 2 + 0 = 2x + 2

What is the derivative of y = x3 + 2x4 + 3x?
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2.36
dy
dx = 3x2 + 8x3 + 3

We just apply the rule to each term in the sequence, easy!

What is the derivative of f = At +B+ t8, where A and B are constants?
Note now we will differentiate with respect to t.

2.37
df
dt = A+ 0 + 8t7 = A+ 8t7

Same rules – just different symbols. Remember that the exact symbols we
use don’t matter, the process is always the same.

Of course, there are many other functions in mathematics that we’ll use
often when describing the world around us. It’d be helpful to be able to
differentiate those. Let’s start with one very useful one, the derivative of:

y = ex

The derivative of this is actually:

dy
dx = ex

So, ex is the derivative of itself. That’s neat, and makes it a very useful
function for later on once we start talking about differential equations.

Can you work out what the derivative of y = ex + x would be?

2.38
dy
dx = ex + 1

Again, we just differentiate every term of the expression one-by-one.

If we have a constant coefficient in front of our equation, like:

y = Aex

Where A is a constant, then that constant will just sit there while we do
the derivative, so:

dy
dx = Aex
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What is the derivative of y = 5ex?

2.39
dy
dx = 5ex

Other functions we might want to differentiate are the trigonometric func-
tions, sin(x) and cos(x):

y = sin(x) → dy
dx = cos(x)

y = cos(x) → dy
dx = − sin(x)

So, in words, ‘sine becomes cosine, and cosine becomes minus sine’.

What is the derivative of y = sin(x) + cos(x)?

2.40
dy
dx = cos(x) + (− sin(x)) = cos(x)− sin(x)

Again just differentiating each term separately.

What about the derivative of f = − sin(t)?

2.41
df
dt = − cos(t)

Remembering that the exact letters we use don’t matter, the process is
the same. The negative sign is also really just a constant coefficient (−1),
so stays at the front.

What about the derivative of y = − cos(x)?

2.42
dy
dx = −(− sin(x)) = sin(x)

Because the two minus signs multiply to give a positive (−1×−1 = 1).

For any of these functions we’ve just looked at, if we have a constant
coefficient inside the function, like:

y = e3x

y = sin(ıx)
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Then when we differentiate the function that constant gets pulled out to
the front of the derivative, due to something called the chain rule, which
we’ll learn about next time. So:

y = e3x → dy
dx = 3e3x

y = sin(ıx) → dy
dx = ı cos(ıx)

In the second example, remember that we still differentiate the sine to a
cosine.

What is the derivative of y = cos(4x)?

2.43
dy
dx = −4 sin(4x)

How about the derivative of y = eax + sin(bx), where a and b are con-
stants?

2.44
dy
dx = aeax + b cos(bx)

Phew, lots of new stuff. We will just learn the derivative of one more
function which will be useful, the derivative of the natural logarithm:

y = ln(x) → dy
dx =

1

x

A bit weird, but that’s what it is. We will look at why another time.

What’s the derivative of y = ln(x) + e2x?

2.45
dy
dx =

1

x
+ 2e2x

To bring this back to the real world, imagine we have a chemical reaction
where the amount of product, P, produced over time, t, is given by:

P = P0ekt
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Where P0 is the initial amount of product, and k is a rate constant. What
is an expression for the rate of change of P with time?

2.46
dP
dt = kP0ekt

Remembering that P0 is a constant coefficient and stays at the front. ekt
differentiates using the normal rule seen above, becoming kekt .

Given that P = P0ekt , how could you rewrite that derivative above so it’s
just in terms of k and P?

2.47
dP
dt = kP

This is actually an expression for the rate of the reaction producing P. The
rate of a chemical reaction is just the rate of change of the amount of
product over time. If k is a big number, is the reaction fast or slow?

2.48 Fast, because if k is big then dP
dt is big, and the rate of reaction

is big, so the reaction is fast. Remember that when we do derivatives in
science, they always represent something physical and tangible.

To finish with, let’s practice what we’ve learnt here. Make sure you can
get the answers to the questions below correct before moving on – if you
get stuck, have another look at the frames in this chapter.

Differentiate the following functions. You may assume anything other than
y and x is a constant.

i y = 4x2 + 2x

ii y = sin(x) + 2

iii y = cos(3x) + sin(x)

iv y = e2x + x−2

v y = ln(x)− x3 − sin(x)

vi y = cos(Ax) + 4

2.49
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i dy
dx = 8x + 2

ii dy
dx = cos(x)

iii dy
dx = −3 sin(3x) + cos(x)

iv dy
dx = 2e2x − 2x−3

v dy
dx = 1

x
− 3x2 − cos(x)

vi dy
dx = −A sin(Ax)

If you didn’t get those all quite right, have another look through this
chapter before continuing to the next.

In the next few chapters we are going to keep working to expand the range
of functions we can differentiate, so that when we come to use them in
anger we are armed and ready. We’ll start by looking at a rule called the
product rule.



Chapter 3

The Product Rule

In the last chapter we learnt how to differentiate the basic set of functions
we need. Now we are going to learn a rule called the product rule that
will help us differentiate a larger range of functions, and be helpful when
we start to solve differential equations.

3.50 As a motivating example, we’re all familiar with atomic orbitals, and
probably with something called a radial distribution function (RDF), F ,
which tells you the probability of finding the electron in the orbital at a
distance r from the nucleus of the atom. For a 1s electron in a hydrogen
atom, the equation that describes the RDF is:

F = r2e−2r

It would be good to be able to differentiate this equation, as the derivative
of F will eventually let us work out the place where the electron is most
likely to be found, and start to explain the chemistry of the system.

The function F is a product of two individual functions: r2 and e−2r . Can
you differentiate these functions on their own?

3.51 We can after last time, and find they differentiate to 2r and −2e−2r .

So, the question is, what is the derivative of F? Unfortunately, it isn’t
as simple as just differentiating each function and multiplying the result.
Instead, we have to use something called the product rule. The product

19
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rule says:
For F = g(r)× h(r) → dF

dr = g
dh
dr + h

dg
dr

In words, that is that the derivative of the product of two things is ‘the
first thing times the derivative of the second thing, plus the second thing
times the derivative of the first thing’. We’ve used F , g , and h here to
represent the parts of our function, but the symbols don’t matter.

We’ll explore the reason this rule works shortly, but for now, can we dif-
ferentiate our original RDF F using the product rule? Remember we had:

F = r2e−2r = r2 × e−2r = g(r)× h(r)

Can we use this, and the definition of the rule above to work out the
derivative, dF

dr ?

3.52
dF
dr = −2r2e−2r + 2re−2r

Let’s go through this step by step. First we had to define what our functions
g and h were, and we said:

g(r) = r2 (the first function)
h(r) = e−2r (the second function)

Then we had to work out the derivative of these two functions individually.
We did this just now, and found that:

dg
dr = 2r (derivative of the first function)
dh
dr = −2e−2r (derivative of the second function)

Then we just had to combine these all together as the product rule states:

dF
dr = g

dh
dr + h

dg
dr → dF

dr = r2(−2re−2r ) + e−2r (2r)

Then we just tidied up the expression a bit to find:

dF
dr = −2r2e−2r + 2re−2r = 2e−2r (r − r2)
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If you can’t be arsed to tidy things up, that’s absolutely fine. Although
sometimes writing expressions in different forms helps you see them in
different and interesting lights.

Anyway, can you now differentiate the function:

y = x2e−2x

using the product rule?

3.53
dy
dx = −2x2e−2x + 2xe−2x

Hopefully you can see that that was the same example as above, just with
different letters. I know I keep banging on about it, but the letters we use
don’t matter!

Let’s do a new example. Let’s use the product rule to differentiate the
function:

y = x3 sin(x)
First we need to work out how to split it into two parts that you can
differentiate individually, then apply the product rule. What are those two
parts? Or, what are the two parts of our product?

3.54 x3 and sin(x). We could write our original function as:

y = x3 × sin(x) = f × g

Where f = x3 and g = sin(x).

Great. So, we have our two parts of our product, now we need to differ-
entiate them. Can you differentiate each function f and g?

3.55 You should find that df
dx = 3x2 and dg

dx = cos(x).

So we now have the four things we need: the two functions making up our
original product, and their derivatives. Can you combine them using the
product rule to get our final derivative, dy

dx ?

3.56
dy
dx = x3 cos(x) + 3x2 sin(x)
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Let’s go through this step-by-step again. Split our original function into
two:

y = x3 sin(x) = g(x)× h(x) → g = x3 and h = sin(x)
Work out both derivatives individually:

dg
dx = 3x2 and dh

dx = cos(x)

Combine according to the rule:
dy
dx = x3(cos(x)) + sin(x)(3x2) = x3 cos(x) + 3x2 sin(x)

Easy! Let’s do some more. How about the derivative of:

y = sin(x) cos(x)

3.57
dy
dx = − sin2(x) + cos2(x)

Hopefully you’re getting a feel for how this works. When we see some-
thing that’s a product of two functions, we can use the product rule to
differentiate it. The steps to this are:

1. Identify how to split the function into a product of two functions
that you can differentiate individually.

2. Differentiate them individually, and combine them according to the
product rule.

Calculate the derivative of
y = x ln(x)

3.58
dy
dx = 1 + ln(x)

Because, following the rule, we’d find:
dy
dx = x × 1

x
+ ln(x)× 1
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We could even use the product rule on things that don’t really require it,
just to check that it works. Think about the function y = x2. We can
write this as:

y = x × x

What is the derivative of this, using the product rule?

3.59
dy
dx = x × 1 + x × 1 = 2x

Just as we would predict without the rule.

Anyway, using the product rule is all fine and fun, but let’s try and develop
some intuition for where it comes from. In my experience, if you ask a
group of students new to calculus how they think they should differentiate
a product of two functions, many of them think you just differentiate both
parts and multiply them together, like this:

y = f (x)× g(x) → dy
dx =

df
dx

dg
dx

This feels logical, but it’s easy to see why this doesn’t work. Try to apply
that rule to our previous example, the derivative of y = x2 (writing x2 as
x × x).

3.60 dy
dx = 1× 1 = 1.

So that would imply that the derivative of y = x2 is 1, which we know is
false from our previous rules. Of course, you might argue that those rules
could be wrong, so let’s look at it another way. Derivatives represent rates
of change, so if we imagine that dy represents a change in area (units of
metres squared) and dx represents a change in time (units of seconds),
what are the units of the derivative dy

dx ?

3.61 They’ll be area over time, or metres squared per second.

Now imagine that we can express y as a product of two other functions f
and g , where the units of f and g are distance (in metres), and test our
incorrect version of the product rule:

dy
dx =

df
dx

dg
dx
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Then what are the units of both sides of the equation?

3.62 The LHS has units of metres squared per second, but the RHS has
units of metres squared per second squared. The equation is dimensionally
inconsistent because the units are different on each side, and so it cannot
be true.

Alright, you probably now believe that the ‘do each derivative and multiply
them together’ idea is wrong. But that doesn’t help us understand why
the actual correct version of the product rule is correct. To do this, let’s
think about having a function, y , and making a small change to it. What
symbol do we use to represent a small change in a function y?

3.63 dy , remember that our derivatives, such as dy
dx , represent the ratio

of two small changes.

Imagine we now have our original function, y , and we change it by the
small amount dy . What is the value of the changed function?

3.64 y + dy . We just add that small change to our function.

Now imagine that y = f × g , a product of two functions. If we change
y by some amount dy , these will also have changed by some amounts df
and dg .

Given that y = f g , How could you write down an equation for y + dy?

3.65
y + dy = (f + df )(g + dg)

We just swap each individual function in y = f g for the corresponding
function plus a small change.

Can you expand the bracket (f + df )(g + dg) above?

3.66 You should find:

f g + f dg + gdf + dgdf

Which means that:

y + dy = f g + f dg + gdf + dgdf
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Given that y = f g from our original function, can you cancel something
from the equation above to get an expression for dy?

3.67
dy = f dg + gdf + dgdf

Maybe you can see this is starting to look like the product rule a bit, but
that df dg at the end is messing it up. However, if df represents a very
(infinitesimally) small change in f , do you think the product df dg is a big
or a small number?

3.68 It’s a very small number, in fact a very very small number. So small
that we can basically say it’s roughly equal to zero. The smaller that our
changes df and dg get, the product df dg gets smaller much faster, so we
can say that:

df dg ≃ 0

This approximation becomes exact once we take a real derivative, and we’ll
see why later.

Anyway, if df dg ≃ 0, how can we write our expression for dy from the
previous step?

3.69
dy = f dg + gdf

If we now divide everything by a small change in x , dx , what do we get?

3.70
dy
dx = f

dg
dx + g

df
dx

Which is our original product rule! So that shows us why the expression is
what it is. Strictly we can’t divide by these small dxs like this, but it works
for reasons that we’ll talk about later. We’ll also see another way to arrive
at this result once we start thinking about the geometrical interpretation
of these derivatives.

We can make a neat rearrangement of the equation above to gain some
more intuition for how the rule works. What do you get if you divide the
equation above by y?
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3.71
1

y

dy
dx =

f

y

dg
dx +

g

y

df
dx

Which, if we remember that y = f g , becomes:

1

y

dy
dx =

1

g

dg
dx +

1

f

df
dx

This will be a bit less of a pain to write out if we introduce a contracted
notation for the derivative, which is actually a pretty common thing to do.
We’ll let:

df
dx = f ′

We call the derivative f ′ (‘f prime’), and we don’t make the variable we
are differentiating by (here x) explicit. This shorthand often makes things
neater to write down. Can you write down the result at the top of this
frame using this notation?

3.72
y ′

y
=

g ′

g
+

f ′

f

This looks quite neat, so let’s think about what the fraction y ′

y
physically

means. It represents the rate of change of y divided by y , which basically
tells you how big the rate of change of y is relative to y itself. If the rate
of change of y (y ′) is much bigger than y , is this fraction large or small?

3.73 Large, because if y ′ >> y , then y ′

y
>> 1.

What about if the rate of change of y is much smaller than y?

3.74 It will be small, because if y ′ << y , then y ′

y
<< 1.

Anyway, remember that:
y ′

y
=

g ′

g
+

f ′

f

Is just the product rule but rewritten. So let’s see if we can use these
fractions to make sense of it. Remember that y = f g .

If f ′

f
>> g ′

g
, what we can say about y ′

y
?
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3.75 We can say that:
y ′

y
≃ f ′

f

Because if f ′

f
>> g ′

g
then f ′

f
+ g ′

g
≃ f ′

f
. A massive number plus a tiny

number is basically still a massive number.

This makes some intuitive sense too, because what f ′

f
>> g ′

g
really says is

that the rate of change of f relative to f is much bigger than the rate of
change of g relative to g , so it makes sense that the overall rate of change
of y relative to y is largely determined by f :

y ′

y
≃ f ′

f

The value of g is still important though. Make the substitution y = f g
and rearrange the result to get an expression for y ′ alone.

3.76 You should find:
y ′ ≃ gf ′

So in the case that f ′ >> g ′, the rate of change of y is proportional to
f ′, but is scaled by g . If g = 0, then we would find y ′ = 0, which would
make sense because then y = f g = f × 0 = 0, and if g was big, then y ′

would also be big, even if g ′ was small. This should give you a bit of a feel
for why we have these combinations of ‘first thing times the derivative of
the second thing’ and vice versa in our product rules. .

What happens if f ′

f
<< g ′

g
? Work through the argument again.

3.77 You’d find:
y ′

y
≃ g ′

g
→ y ′ = f g ′

As in the previous frame. These ratios y ′

y
are actually called logarithmic

derivatives for reasons we might get into later, but I think they help give
a bit of an intuition for why the product rule works, by rewriting:

dy
dx = f

dg
dx + g

df
dx → y ′

y
=

f ′

f
+

g ′

g
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Anyway, the main thing for now is that we can use the product rule, so to
bring it back to actual maths, what is the derivative of:

F = te−t

3.78 dF
dt = −te−t + e−t = e−t(1 − t). Again, the tidying up is optional

and very much dependent on the number of shits you give about using the
result again later.

So that’s the product rule. We will use this a lot in the future, and won’t
always say ‘do this using the product rule’ – you have to be able to spot
when to use it.

Before we continue, differentiate the following expressions with respect to
x :

i y = x4 sin(x)

ii F = 3xe3x

iii y = Ax2 cos(Bx)

iv y = xex + x2 sin(x)

3.79 You should get:

i dy
dx = x4 cos(x) + 4x3 sin(x)

ii dF
dx = 9xe3x + 3e3x

iii dy
dx = −ABx2 sin(Bx) + 2Ax cos(Bx)

iv dy
dx = xex + ex + x2 cos(x) + 2x sin(x)

If you didn’t get these - have a look back at the previous frames before
continuing.

That was the product rule, which we use when we need to differentiate
something we can write as the product of two functions. Now we are going
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to learn another rule, called the chain rule. With those these two rules,
and our basic set of derivatives, we can differentiate anything that science
will throw at us (pretty much).



Chapter 4

The Chain Rule

In the last chapter we learnt the product rule that enabled us to differ-
entiate products of two functions. Now we are going to learn another rule
that will let us differentiate expressions where we have functions inside
other functions – or more practically, where have a function that depends
on something, where that something depends on something else.

4.80 I think the intuition for the chain rule is simpler and easier than for
the product rule, so let’s start there. Imagine you are travelling somewhere
and have the option to walk, cycle, or drive:

• Cycling is 5× faster than walking.

• Driving is 6× faster than cycling.

How much faster is driving than walking?

4.81 Driving would be 5 × 6 = 30 times faster than walking. Congratu-
lations, you intuitively understand the chain rule!

To see how this relates to our derivatives and mathematics, can you re-
member how we defined speed, v , as a derivative involving distance L and
time t?

30
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4.82
v =

dL
dt

Speed is distance divided by time, so in terms of derivatives is a change in
distance dL over a change in time dt.

If I travel faster, will I cover a larger or smaller distance dL in a given time
dt?

4.83 A larger distance, as my speed being higher means that dL
dt will be

higher, so for a given time interval dt I must travel a longer distance dL.

So, thinking about travelling by walking, cycling, or driving, I can define
the speeds as:

vwalk =
dLwalk

dt and vcycle =
dLcycle

dt and vdrive =
dLdrive

dt
Where I travel for the same amount of time dt in each case, but the
distance I travel dL depends on whether I walk, drive, or cycle.

Cycling is 5 times faster than walking, can you express this in terms of
these derivatives?

4.84 vcycle = 5vwalk, or:

dLcycle
dt = 5

dLwalk
dt

Driving is 6 times faster than cycling, can you express this in terms of these
derivatives?

4.85 vdrive = 6vcycle, or:

dLdrive
dt = 6

dLcycle
dt

Can you combine these last two results to find an expression for dLdrive
dt in

terms of dLwalk
dt ?

4.86
dLdrive

dt = 6
dLcycle

dt = 6× 5
dLwalk

dt = 30
dLwalk

dt
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Which is what we said at the start: driving is 30 times faster than walking.
Can you see that to do this we have basically chained the two relationships
together? This is the essence of how the chain rule works.

If we take the result above and manipulate it a bit, we can get it into
the form that the chain rule is usually given in in calculus. We’ll divide
these derivatives and treat them like fractions, even though that’s strictly
an abuse of notation (don’t tell any mathematicians you know):

30 =
dLdrive

dt
dLwalk

dt
=

dLdrive
dt

dt
dLwalk

=
dLdrive
dLwalk

Can you replace the number 30 in the expression at the top of this frame
with this result here? Write down what you get.

4.87
dLdrive

dt =
dLdrive
dLwalk

dLwalk
dt

This kind of expression is how chain rules are normally written. You can
imagine that the dLwalks will cancel on the RHS of this expression so that
the LHS equals the RHS (again, don’t tell any mathematicians you know).

Of course, our original question was: how much faster is driving than
walking?. That obviously relates to the derivative:

dLdrive
dLwalk

If we didn’t know this derivative, but did know a derivative that related
both walking and driving to a third thing (say, cycling), we could construct
a chain rule:

dLdrive
dLwalk

=
dLdrive
dLcycle

dLcycle
dLwalk

We use what we know about the relationship between driving and cycling“
dLdrive
dLcycle

”
and the relationship between cycling and walking

“
dLcycle
dLwalk

”
to work

out a chain rule that will tell us the relationship between driving and
walking, dLdrive

dLwalk
.

So, if cycling is 5 times faster than walking, and driving is 6 times faster
than cycling, can we confirm the result from the start of this chapter using
a chain rule?
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4.88 From the information, we get: dLcycle
dLwalk

= 5 and dLdrive
dLcycle

= 6. Using our
chain rule:

dLdrive
dLwalk

=
dLdrive
dLcycle

dLcycle
dLwalk

= 6× 5 = 30

Which we can then use to say that:
dLdrive

dt = 30
dLwalk

dt
Or, ‘driving is 30 times faster than walking’.

Let’s take stock of what we’ve done here. The chain rule tells us how to
relate two different rates of change. In the example we’ve gone through
above, it tells us how to relate the rate of change of distance and time while
driving ( dLdrive

dt ) to the rate of change of distance and time while walking
( dLwalk

dt ). We just have to know the ratio between the two of them, which
is dLdrive

dLwalk
, and we can learn that from another chain rule.

The trick was to introduce a third function that we can use to relate the
two things we care about – we cared about the difference in speed between
driving and walking. We didn’t know what that was, but we did know how
each of those things related to a third mode of transport: cycling. We
used that relationship to construct the chain rule above.

It probably feels like that was a lot of time spent over-analysing something
that you already knew, and I can understand that view. So let’s see how
we can use this chain rule to help us do derivatives.

If we are doing some hardcore spectroscopy, we might be interested in
writing down an expression for the electric field, E(t), of our light:

E(t) = sin(2ı‌t + ffi)

Where ‌, and ffi are constants - we can worry about the physical interpre-
tation later on.

Can you differentiate this expression for E(t) using the rules we have learnt
so far?

4.89 No, we can’t. The problem is that we have this annoying +ffi term
in our sine function. So what we actually have here is like a function inside
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a function, like this:

E(t) = sin(2ı‌t + ffi) = sin(g(t))

where:
g(t) = 2ı‌t + ffi

Basically, we are introducing a third function g = 2ı‌t + ffi so we can
write:

E(g) = sin(g)
Just like we had with our first case, we now have a function g that we can
relate to both E and t (as we had with the cycling, that we could relate
to both the walking and the driving).

Can you differentiate g (with respect to t) and E (with the substitution
made, so with respect to g) on their own?

4.90 Yes we can:
dE
dg = cos(g)

dg
dt = 2ı‌

Just using the normal rules we learnt before. So what is the overall deriva-
tive of our original function, E(t)?

Well, we are going to use a chain rule just like we did before. In the end
we want dE

dt , but we can’t differentiate that using the rules we have so far,
so we use our introduced third function g to define a chain rule:

For E = E(g(t)) → dE
dt =

dE
dg

dg
dt

Remember that you can get a feel for why this works by imagining that
the dg terms cancel each other out in the above, but this isn’t strictly
an ‘allowed’ thing to do. The main point is to see that introducing that
simplifying third function allowed us to turn one derivative we couldn’t do
into two that we can do. The chain rule tells us how to put them together.

Anyway, for our example:

dE
dt = cos(g)× (2ı‌) = 2ı‌ cos(2ı‌t + ffi)
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Where we got the last bit by undoing our original substitution, so we get
the answer just in terms of t.

Can you differentiate:
E(x) = cos(x2)

using the chain rule? Our third function will now be that g = x2, so
E = cos(g). Remember we choose this one because it gives expressions
g(x) and E(g) that are easy to differentiate.

4.91 You should find that:
dg
dx = 2x and dE

dg = − sin(g)

So by the chain rule:
dE
dx =

dE
dg

dg
dx = −2x sin(g) = −2x sin(x2)

Let’s summarise the steps required to use the chain rule before we practice
it a bit. Imagine you’ve got a complicated looking function that can be
expressed as a function inside a function. Let’s call that function F (t), so
we want the derivative dF

dt .

1. Identify a substitution, g(t), that will turn the complicated ‘function-
inside-a-function’ F , into two simpler functions: F (g) and g(t) We
need to be able to differentiate both of these functions on their own.

2. Differentiate both of these simpler functions, to find dF
dg and dg

dt

3. Multiply them together to find dF
dt , as per the chain rule.

Use these steps to differentiate:

F (t) = et3+t

You need to identify the appropriate substitution first!

4.92 You should have found the substitution g(t) = t3 + t. Then, our
function becomes F (g) = eg . Our two derivatives are then:

dF
dg = eg and dg

dt = 3t2 + 1
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Using the chain rule, we multiply these to find:
dF
dt =

dF
dg × dg

dt = (3t2 + 1)et3+t

To make the link back to our initial intuition with the walking, cycling, and
driving clear, there we knew how two things (walking and driving) related
to a third thing (cycling). We didn’t explicitly know how walking and
driving were related, but could use their relationship to cycling to figure it
out.

It’s the same idea here, if we call driving y and walking x , except that now
we create our third thing (cycling – call it g) to relate to y and x in a way
that makes it easy to find dy

dg and dg
dx . The chain rule then tells us how to

find dy
dx :

dy
dx =

dy
dg

dg
dx

Let’s see another example. Peaks in infrared spectra often have a shape,
P , that can be modelled using something called a Gaussian function:

P (!) = Ae−!2

Where ! is the infrared wavenumber (a variable), and A is a constant.

Can you calculate the derivative dP
d! ?

4.93 Make the substitution g(!) = −!2. Then, our function becomes
P (g) = Aeg , like before. Our two derivatives are then:

dP
dg = Aeg and dg

d! = −2!

We now construct and use our chain rule, to find:
dP
d! =

dP
dg × dg

d! = −2!e−!2

We could use this derivative to work out where the center of our peak was,
and other things. But that’s a story for later. For now, let’s finish this
part on the chain rule with a few examples. Differentiate the following
with respect to x :
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i y = sin(x3)

ii F = e3x−x2

iii y = cos(Bx + Ax4)

iv y = ecos(x)+x

4.94 You should get:

i dy
dx = 3x2 cos(x3)

ii dF
dx = (3− 2x)e3x−x2

iii dy
dx = −(B + 4Ax3) sin(Bx + Ax4)

iv dy
dx = (1− sin(x))ecos(x)+x

The previous three chapters, on basic principles, the product rule, and the
chain rule, will allow us to differentiate most things that science throws
our way. So now we’re going to start thinking about these derivatives in
different ways, and using them to solve some interesting problems.
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Visualising Derivatives

We understand now that derivatives are rates of change, and are armed
to the teeth with methods to calculate them, so it’s time to use them for
some interesting stuff. To facilitate this, it’s helpful to have geometric
intuition for what they mean – relating the derivative to the gradient of a
curve at some point.

Later we’ll extend this into a few dimensions and show how it has all kinds
of exciting applications. For now, let’s stick with functions of one variable,
that we can plot in 2D.

5.95 Here’s a graph showing how the efficiency, ›, of some process varies
with time.
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›
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The process could be the yield of a chemical reaction, or the output from a
factory, the efficiency of an engine, the rate at which a drug is metabolised,
or something else. Choose the example that most tickles your fancy.

Roughly (to the nearest 0.5s), when is the process most efficient?

5.96 At around 1.5s, give or take a bit. It’d be good if we had a way
to exactly calculate that though, rather than having to plot a graph and
reading it off by eye like a humanities student. We’ll work our way to
figuring out how to do just that by the end of this chapter.

To begin with, if efficiency is › and time is t, what derivative tells us the
rate of change of efficiency with time?

5.97
d›
dt

Easy. Now, let’s look at the graph from earlier, and zoom in on a section
of it:
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It looks roughly like a straight line over this period. Can you remember
(from school) how to find the gradient of this line? What is the method,
or equation, for finding the gradient?

5.98 ‘Change in y over change in x ’, ‘rise over run’, or something daft
like ‘down the stairs and along the corridor’ (I was taught that last one in
school, and it doesn’t make sense however you look at it). The main idea
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is that you take the change in the thing on the y axis and divide by the
change in the thing on the x axis:

Gradient = Change in y

Change in x
=

y2 − y1
x2 − x1

=
∆y

∆x

So what is an expression for the gradient using the symbols from our graph
above?

5.99
Gradient = Change in ›

Change in t
=

∆›

∆t

So the gradient of this straight line is ∆›
∆t

. If I could actually be arsed to
go to the trouble of finding two points, getting ∆› and ∆t, and dividing
them1, I’d find that the gradient is about 0.6 or so.

If the gradient is 0.6, and I increase t by 0.1, what is the corresponding
increase in ›?

5.100 0.06, because:

∆›

∆t
= 0:6 → ∆› = 0:6∆t = 0:6× 0:1 = 0:06

Now, you might notice that we’re talking about these ∆› things like we
talked about our infinitely small changes dy and df from chapter 1. You
might, if you parents paid for you to have a pointless and anachronistic
education, also know that the Greek letter ∆ is the equivalent of an upper
case letter d in English. This is not a coincidence.

The gradient we just talked about was of a section of the function that
looked like a straight line. What if I zoom on a different part of the
function:

1And in general, I can’t.
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What is the gradient of the function here? Is it obvious to define?
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