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Combination Differences

In high resolution spectroscopy, it possible to resolve rotational fine structure along with vibrational tran-
sitions. To understand this, first note that any vibrational state will have it’s own set of rotational states
that are ‘nested’ inside the vibrational state. These have energies given by F (J) = BvJ(J + 1)1, where
F (J) is the energy (in wavenumbers) of the J th level, and Bv is the rotational constant associated with
this specific vibrational state. The rotational constant is just a proportionality constant between FJ and
J(J + 1). We know that:

Bv =
h

8π2cI
=

h

8π2cµR2
(1)

Where I is the moment of inertia of the rotor, which is given by I = µR2 in the case of a diatomic
molecule. All other symbols have their usual meanings. Note here that Bv is given in wavenumbers.

From this, we see clearly that the rotational constant is inversely proportional to R2, where R is the
bond length of our diatomic. When we excite a vibration in our molecule, this bond will start to stretch
and vibrate - it should, therefore, make intuitive sense that the rotational constant will be slightly different
in each different vibrational state.

These differences are quite small, and actually for low levels of excitation saying that B1 = B0 = B
isn’t an awful approximation. But with high resolution spectroscopy we don’t need to assume this, we
can use combination differences to find out different rotational constants, and then extrapolate to an
equilibrium bond length of the molecule.

Now let us consider what happens when a molecule undergoes ro-vibrational excitation2. Quite simply,
we excite the vibration (say, from v = 0→ 1), and then can excite rotations alongside it. If the rotations
we excite correspond to an increase in J , (i.e ∆J = +1), this produces an ‘R-Branch’ in the spectrum.
Conversely, if the rotations correspond to a decrease in J (∆J = −1), then this produces a ‘P-Branch’3.
We can write expressions for a particular ro-vibrational state, if we assume the vibrations behave as a
harmonic oscillator, and the rotations as a rigid rotor, then:

S(v, J) = G(v) + F (J) = (v +
1

2
)~ω +BvJ(J + 1) (2)

Simply the sum of a vibrational level and rotational level! All symbols have their usual meanings. Let us
now imagine we do an arbitrary excitation from v to v + 1, and from J to J ′ - the energy of the spectral
line, E, would be:

E = S(v + 1, J ′)− S(v, J) =

[
(v +

3

2
)~ω +Bv+1J

′(J ′ + 1)

]
−
[
(v +

1

2
)~ω +BvJ(J + 1)

]
(3)

Which simplifies down to:
E = ~ω +Bv+1J

′(J ′ + 1)−BvJ(J + 1) (4)

Which is an expression for a generic rovibrational line, under the harmonic oscillator and rigid rotor ap-
proximations. We haven’t decided if our rotational transition will be in the R or P branch, so let’s do that
now.

First taking the R-branch, where J ′ = J + 1. To help us keep track of all the different J’s, let’s call the
J value for the initial state in the R-branch JR, such that our transition is from J = JR to J ′ = JR + 1.
The energy of an R-Branch line, ER, is therefore:

ER = ~ω +Bv+1(J
2
R + 3JR + 2)−Bv(J2

R + JR) (5)

1Within the rigid rotor approximation.
2The excitation of rotations and vibrations simultaneously
3The ‘R’ and ‘P’ designations actually come from the French: ‘Riches’ and ‘Pauvres’. However, they could just as easily

come from English ‘Rich’ and ‘Poor’, so presumably in post-Brexit Britain this particular nugget of spectroscopic history will
be whitewashed.
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And similarly, a P-branch line, EP , from J = JP to J ′ = JP − 1, is:

EP = ~ω +Bv+1(J
2
P − JP )−Bv(J2

P + JP ) (6)

Convince yourself that these are correct by writing it out in full!

Now we have expressions for a generic R and P branch line, we are well on the way to extracting
useful information from our spectrum, so let’s take stock and remember what our aim actually is. We
want to find out the rotational constants Bv and Bv+1, so that we can extrapolate to find the equilibrium
rotational constant Be, and therefore the equilibrium bond length. This is not the same B0, because there
is a vibrational zero-point energy - we want the bond length at the bottom of the harmonic well, not at
the zero-point level. An obvious question, therefore, is ‘How are Be and Bv linked?’. The answer is:

Be = Bv + α(v +
1

2
) (7)

Where α is a parameter we need to determine. So we have two unknowns, Be and α, so it makes sense
that we need to have two equations (two different Bv values) to find them both. Therefore, our mission is
to find two values of Bv that we can use.

Let’s now turn back to our expressions for an R and a P branch line. Let’s also now assume that our
vibrational excitation was from v = 0 to v = 1, so we can write them:

ER = ~ω +B1(J
2
R + 3JR + 2)−B0(J

2
R + JR) (8)

EP = ~ω +B1(J
2
P − JP )−B0(J

2
P + JP ) (9)

So, quite simply, we need to eliminate B1 or B0 from these equations by taking the difference of the two
lines, and in general the way we can do that is as follows. To eliminate B0 by taking a difference, we
require that:

J2
R + JR = J2

P + JP (10)

Such that:
ER − EP = B1(J

2
R + 3JR + 2− J2

P + JP ) (11)

Now, when is equation (10) satisfied? Clearly only when JR = JP = J - i.e. when both the R and the P
branch line have a common initial state such that:

ER − EP = B1(4J + 2) (12)

Where J is the quantum number for the common initial state. Often, you will be given examples where
two lines originate from J = 1, and then clearly the difference between two lines is equal to 6B1.

Alternatively, we could try to eliminate B1. This would require that:

J2
R + 3JR + 2 = J2

P − JP (13)

This condition is true when JP = JR + 2. This is tricker to conceptualise, but means the the initial state
of the P-branch line is two quantum numbers higher than the initial state of the R-branch line. This, my
friends, means that the final state of the R-branch line is JR + 1 (as JR was the initial state), and the
final state of the P-branch line is JP − 1 = JR + 2 − 1 = JR + 1. Therefore, we can eliminate B1 by
taking the difference of two lines with a common final state. We could follow the same process again,
and would find that if the common final state is given by JR + 1 = 1, then the difference of the two lines
is 6B0, in an analogous way to before.

So, having done this, we will have found values for B0 and B1, which we can bang into equation (7)
to find Be and α. A good check for when you’ve done this is to note that at higher vibrational excitations,
the B constant will decrease as R increases - so you should find Be is bigger than both B0 and B1.


