
1

Electromagnetic Waves

In my experience people entering a spectroscopic field from a non-physics back-
ground (such as chemistry or biology) can struggle with some of the concepts
surrounding the mathematical description of electromagnetic waves, as I did early
in my PhD. For a trained physicist, this is generally just assumed knowledge and
so it can be demoralising for a new student to not understand what is meant by
terms like ‘phase’, or ‘k-vector’. However, it is rather straightforward if broken
down simply. A more mathematical treatment can be found in a standard text on
electrodynamics, such as [1].

A one-dimensional travelling electromagnetic wave E(z, t) can be expressed
as follows:

E(z, t) = E0 exp [i(kz − ωt)] (1)

Physically, this wave could be the electric field of some laser light. The wave is
‘travelling’ because it is moving in both space (the coordinate z), and time t. Let
us consider the meaning of each of the terms in Equation 1 in turn.

• E0 refers to the amplitude of the electric field - the maximum height of
the peaks in the wave. This would have units of volts per unit length.

• t is time, with units of time.

• ω is the angular frequency at which the wave oscillates in time. It has
units of radians per unit time, such that the product ωt has units of radians,
which are dimensionless1. This is normally just called the frequency. The 1A radian is defined as

the ratio of arc length to
radius length of a circle,
thus the units of length
cancel out and the radian
is dimensionless.

more cycles the wave completes per unit time, the larger the frequency.

• z is the position of the wave in space along the z-axis, with units of length.

• k is the angular wavenumber of the wave. This has units of radians per
unit length, such that the product kz has units of (dimensionless) radians.
It is normally just known as the wavenumber. This can be thought of as a
spatial frequency, where ω was a temporal frequency. The more cycles
the wave completes per unit length, the larger the wavenumber.

• i is the imaginary unit, defined such that i2 = −1. This will be discussed
further below.

The wave is written in an exponential form, but is really just a sinusoidal wave,
as we know from Euler’s formula that:

exp (iθ) = cos(θ) + i sin(θ) (2)
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So if we took the real part of our wave E(z, t):

Re[E(z, t)] = E0 cos(kz − ωt) (3)

Which is the sinusoidal form we expect. We use this exponential form as it is the
most general, and it makes manipulating the wave much simpler when we try to
add phase factors and things. To visualise all the parameters above, it is easiest
to plot the wave, but before we do this there is some mathematical complexity
that needs to be cleared up.

You will probably encounter multiple definitions of the wavenumber, unfor-
tunately. Within spectroscopy and chemistry it is normally thought of as the
reciprocal of the vacuum wavelength of a particular spectroscopic transition, with
the symbol ν̃:

ν̃ =
1

λ
(4)

This definition is useful in chemistry where desire is really just to have a number
that is linked to the transition wavelength but is directly proportional to transition
energy. However, in the context of laser physics, we define the wavenumber, k,
as:

k =
2π

λ
(5)

Which has units of radians per unit length, as mentioned above. This is really the
‘angular wavenumber’, but it is normally just called the ‘wavenumber’, like the
angular frequency is just called the frequency. We do this because we are always
talking about waves that are periodic, and what is interesting is how often the
wave completes a complete periodic ‘revolution’ around 2π radians (a circle). So
how many radians our oscillating wave moves through in a propagation length, or
propagation time, is what interests us.

With this in mind, we should think about how we can link together the number
of oscillations per unit length (k) with the number of oscillations per unit time
(ω). It seems natural that these should be connected: if the wave is oscillating
through a certain number of radians in a certain time, and is also moving through
space, then the speed at which it moves through space will dictate how many
radians it oscillates through in a given distance. That is:

k =
ω

vp
(6)

Where vp is the phase velocity of the wave, which is how fast it is moving in
whatever medium it is travelling in. If the wave moves faster, vp is larger, and the
wave won’t have time to oscillate through as many radians in a given distance than
it would if it was moving more slowly. This is simply what Equation 6 expresses
mathematically.
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Figure 0.1: Illustration of our wave E(z, t) plotted as a function of time (left)
and position (right). Quantities discussed in the text are annotated.

Figure 0.1 shows graphically all of the quantities we have discussed, and how
they relate to one another. We have also defined the reciprocal of the frequency,
the oscillation period, T = 2π/ω, in the leftmost plot on Figure 0.1; and the
wavelength, λ, in the rightmost plot. Both of these quantities represent the time
taken (T ) for, and the distance travelled (λ) in one full oscillation (through 2π
radians). It is clear from the figure that the wavelength, λ, can be defined in
terms of previously met quantities as:

λ =
2π

k
=

2πvp
ω

(7)

However, at the start of this section we specifically said that we would clarify
the meaning of the phase and of the wave vector - two of the concepts that
cause most confusion in this topic in my experience of teaching it. Before we
discuss the phase in the following section, we will briefly discuss the wave vector,
k.

Wave Vectors

The wave vector k looks like the wave number k, but is in bold. This is because
the wave vector is a vector, so has a direction and a magnitude. The magnitude
of the wave vector is simply the wave number. The wave vector points in the
direction of propagation of our electromagnetic wave (the direction of propagation
of a laser beam, for example). In the case that the wave is travelling in 3D space,
rather than the 1D case shown above, then the direction of travel can be split
into three components, corresponding to movement along the x, y and z axes. In
this case we make the substitution:

kz → k · r = kxx̂ + kyŷ + kzẑ (8)

Where r is our position vector in 3D space, which can be split into three compo-
nents in terms of the unit vectors x̂, ŷ, and ẑ. The magnitude of each of these
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components is kx, ky and kz respectively. The total magnitude k3D of our 3D
wave k is given straightforwardly by:

|k| = k3D =
√
k2x + k2y + k2z (9)

The value k3D given in Equation 9 is simply the three-dimensional analogue of
the one-dimensional k used Equation 1. To summarise, the important points are:

• The wave vector, k, is a vector that points in the direction that the wave
is propagating in.

• The magnitude of the wave vector is the wave number, k, and tells you
how many cycles the wave completes in a unit propagation distance (units
of m−1).

In the context of lasers, we often talk about k-vectors, and these are just an-
other name for wave vectors. Specifically, we talk about them in the context of
momentum conservation in phase-matching in non-linear optics. This is because
we can link the magnitude of the k-vector k to the momentum of the wave p:

p = ~k (10)

A simple dimensional analysis illustrates this. Momentum has units of kg m s−1.
The magnitude of the k-vector has units of rad m−1 (as discussed above). The
reduced Planck’s constant ~ has units of kg m2 s−2 rad−1. So, a larger k-vector
(or shorter wavelength, or higher frequency) corresponds to a higher momentum
for the wave. We will now turn to a discussion of the phase.

Phase

The concept of phase elicits a lot of confusion among students in my experience,
but it need not. Fundamentally, the phase of a wave tells you which part
of the cycle it is in. For example, a wave with a phase of π rad is halfway
through a cycle, and a wave with a phase of 0 rad is at the beginning of a cycle.
As such, the phase is an angle, given in radians. Recall however that a radian
is dimensionless, so you will equally see it said that the phase is dimensionless.
The phase is generally given between 0 and 2π, but sometimes the phase can be
greater than 2π, if a wave finishes a cycle and goes onto the next one2.2This lies at the heart

of the concept of phase
unwrapping. If you are
looking at the phase of a
signal over a long time,
then you might see lots of
jumps as the phase gets
to 2π and then skips back
to zero. Unwrapping the
phase gets rid of these
jumps and gives you a con-
tinuous phase.

So the phase is just an angle that tells you which part of the oscillation period
you are in. If it seems odd that we use an angle to define this, remember that
our wave is a periodic sinusoidal function, as shown in Equation 3. The argument
that this function takes is an angle, so it’s natural that we use an angle to define
where ‘on’ this function we are. However, we can distinguish between the absolute
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phase of the wave, and a phase shift or accumulated phase that is added to
the wave.

The absolute phase tells us exactly where we are in the wave cycle overall.
To find the absolute phase of our one-dimensional travelling wave, we note that
we wrote Equation 1 in exponential form deliberately. This exponential form may
be familiar from study of complex numbers in mathematics, where a complex
number N can be written as:

N = |N | exp(iΘ) (11)

Where |N | is the modulus (magnitude) of the complex number, and Θ is the
argument (phase) of the complex number. So we can identify the stuff in the
exponent next to the imaginary unit as our phase. This means that the absolute
phase of the wave in Equation 1, which we will call Θ, is given by:

Θ = kz − ωt (12)

Both quantities kz and ωt are angles as discussed above, so the difference kz−ωt
is also an angle, and defines the absolute phase of our wave. You may sometimes
see it written as:

Θ = kz − ωt+ arg(E0) (13)

Which accounts for the possibility that the amplitude E0 is also a complex number
with it’s own phase. The argument of the complex number is just the phase, so
arg(E0) is the phase of the amplitude which also contributes to the total absolute
phase. But in the examples we consider here E0 is simply a number, so does not
have a phase (or has a phase of zero).

We can further exploit the beauty of the exponential form of complex numbers
to understand what we mean by a phase shift or accumulated phase. A phase
shift is when we move our wave along in its cycle by a given angle. For illustration,
we will call this angle φ. Ultimately what we are doing with a phase shift is:

Θ′ = Θ + φ (14)

Where Θ′ is the absolute phase of the wave after the shift, Θ is the absolute phase
of the wave before the shift, and φ is the added phase. The exponential form of
complex numbers makes this trivially simple. To shift our initial travelling wave
E(z, t) by φ radians, we simply do:

E(z, t)× exp(iφ) = E0 exp [i(kz − ωt+ φ)] (15)

So multiplication by the phase factor eiφ caused a phase shift of our wave by φ
radians. This is what we mean when we talk about phase shifts or accumulated
phase, here we have accumulated a phase of φ radians.
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We can get a feel for what this looks like by considering what happens if we
shift our wave by some different values of φ. This is illustrated in Figure 0.2.
Here we still plot our waves as a function of time, but you can see that the added
phase has the effect of moving the part of the cycle that a wave is in at a given
time around. That is, if you were to pick a specific point on the time axis (such
as that shown with the dashed line on the rightmost plot in Figure 0.2), then all
the waves are clearly at different points in their cycle. The orange curve is π/2
radians ahead of the blue curve, and so on. This kind of plot can be difficult
to visualise as it looks as though the waves with a positive phase shift are being
moved backwards. The best way to think about it is to look at the unshifted wave
(blue), and then look at where it is at the dashed line. Now consider where the
blue wave would be in π/2 radians time - this is where the orange wave is at the
dashed line.
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Figure 0.2: Illustration of our wave E(z, t) plotted as a function of time with
different phase shifts, φ, applied.

To end with a laser based example, often we talk about the spectral phase
φ(ω) that is accumulated by a pulse as it propagates through a medium. This
just means that a wave in the pulse with frequency ω is moved in its cycle by
φ(ω) on propagation through the medium. φ(ω) could be a complicated function
of ω, which is what gives rise to the GDD and higher order dispersions that cause
our pulse to broaden during the propagation.
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